Balaji

Advanced Problems in Mathematics Chapter 10 to 26

for IIT JEE Main and Advanced

by

Vikas Gupta and Pankaj Joshi

Advanced Problems in MATHEMATICS

for

JEE (MAIN & ADVANCED)

by:

Vikas Gupta Director Vibrant Academy India(P) Ltd. KOTA (Rajasthan)

Pankaj Joshi Director Vibrant Academy India(P) Ltd. KOTA (Rajasthan)

ICULUS	
1. Function	3 – 29
2. Limit	30 – 44
3. Continuity, Differentiability and Differentiation	45 – 74
4. Application of Derivatives	75 – 97
5. Indefinite and Definite Integration	98 – 127
6. Area Under Curves	128 – 134
7. Differential Equations	135 – 144
LGEBRA	
8. Quadratic Equations	147 – 176
9. Sequence and Series	177 – 197
10. Determinants	198 – 206
11. Complex Numbers	207 – 216
12. Matrices	217 – 224
13. Permutation and Combinations	225 – 233
14. Binomial Theorem	234 – 242
	243 – 251
15. Probability	

CO-ORDINATE CEOMETRY	
CO-ORDINATE GEOMETRY	
17. Straight Lines	267 – 280
18. Circle	281 – 295
19. Parabola	296 - 302
20. Ellipse	230 - 302
21 . Hyperbola	303 - 307
	308 – 312
TRIGONOMETRY	
22. Compound Angles	
23. Trigonometric Equations	315 – 334
24. Solution of Triangles	335 – 343
25 Inverse Trigenerset : T	344 – 359
23. Inverse Trigonometric Functions	360 – 370
VECTOR & 3DIMENSIONAL GEOMET	81/A144300-01-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
26 Vector % 2D:	
20. Vector & 3Dimensional Geometry	373 – 389
	A CONTRACTOR OF THE OWNER OF THE

Chapter 10 – Determinants

Q.	Exer	cise-1 :	Single Choice	Probler	ns			and the second	5	Contraction of the second
1	If $\begin{vmatrix} 1 \\ \cos \\ \cos \end{vmatrix}$	cos α α 1 β cos γ	$\begin{vmatrix} \cos \beta \\ \cos \gamma \\ 1 \end{vmatrix} = \begin{vmatrix} 0 \\ \cos \alpha \\ \cos \beta \end{vmatrix}$	cosα 0 cosγ	cosβ cosγ 0	then t	the v	value of cos	$s^2 \alpha + \cos^2 \beta + \alpha$	$\cos^2 \gamma$ is :
	(a) 1		(b) $\frac{3}{2}$			(c)	$\frac{3}{8}$		(d) $\frac{9}{4}$	
2.	Let the	e followii	ng system of equ	ations					,	
			kx + y	y + z = 1	1					
			x + ky	y' + z = 1	k					
			x + y	+kz =	k^2					
	has no	solution	. Find <i>k</i> .							
	(a) 0		(b) 1			(c)	2		(d) 3	
3.	If $\begin{bmatrix} a & c \\ b & b \\ c & c \end{bmatrix}$	$\begin{array}{c} 1 + a \\ 2 \\ 1 + b \\ 2 \\ 1 + c \end{array}$	$\begin{vmatrix} 3 \\ 3 \end{vmatrix} = 0$ and vector	rs (1, <i>a</i> ,	a ²)(1	, b, b ²)) and	d (1, c, c ²)	are non-copla	nar, then the
	(a) 2	t abc equ	(b) _1				-			
4.	If the s	vstem of	linear equations			(0)	1		(d) 0	
	II LIC J	Julia di	r + 2ay	+ a7 = 1	n					
			x + 3by	+ bz = 0	5 7					
			x + 4cy	+ cz = 0))					
	has a n	on-zero s	olution, then a.	b. c :						
	(a) are	in A.P.		.,		ው	are	in C D		
	(c) are	in H.P.				(d)	sat	isfy a + 24		
5.	If the n	umber of	quadratic polyn	omials	ar^2 +	$2hr \perp$	c wi	high $anti-f$	+ 3c = 0	
	(i) a, l	, c are d	istinct	omulo	un T	LUX T		anch satisfy	the following	conditions :

(ii) $a, b, c \in \{1, 2, 3, \dots, 2001, 2002\}$ (iii) x + 1 divides $ax^2 + 2bx + c$ is equal to 1000 λ , then find the value of λ . (a) 2002 (d) 2004 (b) 2001 (c) 2003 6. If the system of equations 2x + ay + 6z = 8, x + 2y + z = 5, 2x + ay + 3z = 4 has a unique solution then 'a' cannot be equal to : (a) 2 (d) 5 (b) 3 (c) 4 7. If one of the roots of the equation $\begin{vmatrix} 7 & 6 & x^2 - 13 \\ 2 & x^2 - 13 & 2 \\ x^2 - 13 & 3 & 7 \end{vmatrix} = 0$ is x = 2, then sum of all other five roots is : (d) √15 (c) $2\sqrt{5}$ (a) -2 (b) 0 8. The system of equations kx + (k+1)y + (k-1)z = 0(k+1)x + ky + (k+2)z = 0(k-1)x + (k+2)y + kz = 0has a nontrivial solution for : (b) Exactly two real values of k. (a) Exactly three real values of k. (d) Infinite number of values of k. (c) Exactly one real value of k. **9.** If a_1 , a_2 , a_3 ,..., a_n are in G.P. and $a_i > 0$ for each *i*, then the determinant $\Delta = \begin{vmatrix} \log a_n & \log a_{n+2} & \log a_{n+4} \\ \log a_{n+6} & \log a_{n+8} & \log a_{n+10} \\ \log a_{n+12} & \log a_{n+14} & \log a_{n+16} \end{vmatrix}$ is equal to : (b) $\log\left(\sum_{i=1}^{n^2+n} a_i\right)$ (c) 1 (d) 2 (a) 0 **10.** If $D_1 = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$ and $D_2 = \begin{vmatrix} a_1 + 2a_2 + 3a_3 & 2a_3 & 5a_2 \\ b_1 + 2b_2 + 3b_3 & 2b_3 & 5b_2 \\ c_1 + 2c_2 + 3c_3 & 2c_3 & 5c_2 \end{vmatrix}$ then $\frac{D_2}{D_1}$ is equal to : (c) 20 (d) -20 (b) -10 (a) 10 **11.** If $\Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$ and $\Delta_2 = \begin{vmatrix} 1 & bc & a \\ 1 & ac & b \\ 1 & ab & c \end{vmatrix}$ then : (c) $\Delta_1 + \Delta_2 = 0$ (d) $\Delta_1 + 2\Delta_2 = 0$ (b) $\Delta_1 = 2\Delta_2$ (a) $\Delta_1 = \Delta_2$ (a) $\Delta_1 = \Delta_2$ **12.** The value of the determinant $\begin{vmatrix} 1 & 0 & -1 \\ a & 1 & 1-a \\ b & a & 1+a-b \end{vmatrix}$ depends on : (c) neither a nor b (d) both a and b(b) only b (a) only a

13. Sum of solutions of the equation $\begin{vmatrix} 1 & 2 & x \\ 2 & 3 & x^2 \\ 3 & 5 & 2 \end{vmatrix} = 10$ is : (a) 1 (b) -1 (d) 4 (c) 2 x + dx + ex + f**14.** If D = x + d + 1 x + e + 1 x + f + 1 then D does not depend on : x + ax+b x+c(a) a (b) e (d) x(c) d $\begin{vmatrix} 2x & 2x \\ y - z - x & 2y \\ 2z & z - x - y \end{vmatrix} =$ x - y - z15. The value of the determinant 2y 25 (a) $xyz(x+y+z)^2$ (b) $(x+y-z)(x+y+z)^2$ (c) $(x+y+z)^3$ (d) $(x + y + z)^2$ 16. A rectangle ABCD is inscribed in a circle. Let PQ be the diameter of the circle parallel to the side AB. If $\angle BPC = 30^\circ$, then the ratio of the area of rectangle to the area of circle is : (a) $\frac{\sqrt{3}}{\pi}$ (b) $\frac{\sqrt{3}}{2\pi}$ (c) $\frac{3}{\pi}$ (d) $\frac{\sqrt{3}}{9\pi}$ **17.** Let $ab = 1, \Delta = \begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2ab & 1-a^2+b^2 & 2a \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix}$ then the minimum value of Δ is : (a) 3 (b) 9 (c) 27 (d) 81 **18.** The determinant $\begin{vmatrix} 2 & a+b+c+d \\ a+b+c+d & 2(a+b)(c+d) \end{vmatrix}$ ab + cd $\begin{vmatrix} ab(c+d) + cd(a+b) \\ 2abcd \end{vmatrix} = 0 \text{ for}$ ab + cd ab(c+d)+cd(a+b)(a) a+b+c+d=0(b) ab + cd = 0(c) ab(c+d) + cd(a+b) = 0(d) any a, b, c, d **19.** Let det $A = \begin{bmatrix} l & m & n \\ p & q & r \\ 1 & 1 & 1 \end{bmatrix}$ and if $(l-m)^2 + (p-q)^2 = 9$, $(m-n)^2 + (q-r)^2 = 16$, $(n-l)^2 + (r-p)^2 = 25$, then the value of (det. A)² equals : (a) 36 (b) 100 (c) 144 (d) 169 **20.** The number of distinct real values of K such that the system of equations x + 2y + z = 1, x + 3y + 4z = K, $x + 5y + 10z = K^2$ has infinitely many solutions is : (a) 0 (b) 4 (c) 2

(a) 0 (b) 4 (c) 2 (d) 3

21.

(c)

22. (b)

21. If $\begin{vmatrix} (x+1) & (x+1)^2 & (x+1)^3 \\ (x+2) & (x+2)^2 & (x+2)^3 \\ (x+3) & (x+3)^2 & (x+3)^3 \end{vmatrix}$ is expressed as a polynomial in *x*, then the term independent of x is : (a) 0 (d) 16 (b) 2 (c) 12 -2 cosC cosB **22.** If A, B, C are the angles of triangle ABC, then the minimum value of $|\cos C|$ cos A | is $^{-1}$ $\cos B$ $\cos A$ -1equal to : (a) 0 (d) -2 (b) -1 (c) 1 If the system of linear equations x + 2ay + az = 0x + 3by + bz = 0x + 4cy + cz = 0has a non-zero solution then a, b, c are in (a) A.P. (b) G.P. (c) H.P. (d) None of these **24.** If *a*, *b* and *c* are the roots of the equation $x^3 + 2x^2 + 1 = 0$, find $\begin{vmatrix} a & b & x \\ b & c & a \\ c & a & b \end{vmatrix}$ b xb (b) -8 (a) 8 (d) 2 (c) 0 **25.** The system of homogeneous equation $\lambda x + (\lambda + 1)y + (\lambda - 1)z = 0$, $(\lambda + 1)x + \lambda y + (\lambda + 2)z = 0, (\lambda - 1)x + (\lambda + 2)y + \lambda z = 0$ has non-trivial solution for : (a) exactly three real values of λ (b) exactly two real values of λ (c) exactly three real value of λ (d) infinitely many real value of λ $\begin{vmatrix} 7 & 6 \\ 2 & x^2 - 13 \\ x^2 - 13 & 3 \end{vmatrix}$ x² -13 2 7 = 0 is x = 2, then sum of all other 26. If one of the roots of the equation five roots is : (c) 2√5 (b) 0 (d) $\sqrt{15}$ (a) -2 Answers 5. (a) 6. (c) 7. (a) (b) 4. (c) 2. 3. 8. (c) (c) 9. 1. (a) (a) 10. (b) 14. (d) 15. (c) 16. (a) 17. (c) (b) (c) 13. 18. (d) 12. 19. 11. (c) (c) 20. (c) 24. (a) 25. (c) 26. (a) 23. (c)

Exercise-2 : One or More than One Answer is/are Correct a^2 а 0 **1.** Let $f(a, b) = \begin{vmatrix} 1 & (2a+b) \end{vmatrix}$ $(a+b)^2$, then 0 1 (2a + 3b)(b) (a+2b) is a factor of f(a, b)(a) (2a+b) is a factor of f(a, b)(d) a is a factor of f(a, b)(c) (a+b) is a factor of f(a, b) $1 + \cos^2 \theta = \sin^2 \theta$ $2\sqrt{3} \tan \theta$ **2.** If $\cos^2 \theta = 1 + \sin^2 \theta = 2\sqrt{3} \tan \theta$ = 0 then θ may be : $\cos^2 \theta$ $\sin^2 \theta = 1 + 2\sqrt{3} \tan \theta$ (d) $\frac{11\pi}{6}$ (a) $\frac{\pi}{6}$ (b) $\frac{5\pi}{6}$ (c) $\frac{7\pi}{6}$ $\begin{vmatrix} a+d & a+3d \\ a+2d & a \\ a & a+d \end{vmatrix}$ then : а **3.** Let $\Delta = |a+d|$ a + 2d(a) Δ depends on a (b) Δ depends on d (c) Δ is independent of a, d (d) $\Delta = 0$ **4.** The value(s) of λ for which the system of equations $(1-\lambda)x + 3\gamma - 4z = 0$ $x - (3 + \lambda)y + 5z = 0$ $3x + y - \lambda z = 0$ possesses non-trivial solutions. (a) -1 (b) 0 (c) 1 (d) 2 5. Let $D(x) = \begin{vmatrix} x^2 + 4x - 3 & 2x + 4 & 13 \\ 2x^2 + 5x - 9 & 4x + 5 & 26 \end{vmatrix} = \alpha x^3 + \beta x^2 + \gamma x + \delta$ then : $8x^2 - 6x + 1$ 16x - 6 104 (c) $\alpha + \beta + \gamma + \delta = 0$ (d) $\alpha + \beta + \gamma = 0$ (b) $\beta + \gamma = 0$ (a) $\alpha + \beta = 0$ 6. Let $D(x) = \begin{vmatrix} x^2 + 4x - 3 & 2x + 4 & 13 \\ 2x^2 + 5x - 9 & 4x + 5 & 26 \\ 8x^2 - 6x + 1 & 16x - 6 & 104 \end{vmatrix} = \alpha x^3 + \beta x^2 + \gamma x + \delta$ then : (b) $\beta + \gamma = 0$ (c) $\alpha + \beta + \gamma + \delta = 0$ (d) $\alpha + \beta + \gamma = 0$ (a) $\alpha + \beta = 0$ 7. If the system of equations ax + y + 2z = 0x + 2y + z = b2x + y + az = 0has no solution then (a + b) can be equals to : (a) -1 (b) 2 (c) 3 (d) 4

Determinants

8. If the system of equations

ax + y + 2z = 0 x + 2y + z = b 2x + y + az = 0has no solution then (a + b) can be equal to
(a) -1
(b) 2
(c) 3
(d) 4

1					Ansv	vers			di an		17
1.	(b, c, d)	2.	(b, d)	3.	(a, b)	4.	(a, b)	5.	(a, b, d)	6.	(a, b, d)
7.	(b, c, d)	8.	(Ъ)			1.5 F. 1					

and the second

-

Exercise-3 : Comprehension Type Problems

Sector state of the sector of			
	Paragraph for (Question Nos. 1 to 3	
Consider the system	n of equations		
and the second	$2x + \lambda y +$	6z = 8	
and the second second	x+2y+	$\mu z = 5$	
and the second second	x+y+	3z = 4	
The system of equa	ations has :		and the second second second
1. No solution if :			
(a) $\lambda = 2, \mu = 3$	(b) $\lambda \neq 2, \mu = 3$	(c) $\lambda \neq 2, \mu \neq 3$	(d) $\lambda = 2, \mu \in \mathbb{R}$
2. Exactly one solution	if:	11.000ert 8.0000	
(a) λ≠2, μ≠3	(b) $\lambda = 2, \mu = 3$	(c) $\lambda \neq 2, \mu = 3$	(d) $\lambda = 2, \mu \in \mathbb{R}$
3. Infinitely many solut	tions if :		
(a) $\lambda \neq 2, \mu \neq 3$	(b) $\lambda = 2, \mu \neq 3$	(c) $\lambda \neq 2, \mu = 3$	(d) $\lambda = 2, \mu \in \mathbb{R}$

204

.

Exercise-4 : Subjective Type Problems **1.** If 3^n is a factor of the determinant $\begin{vmatrix} 1 & 1 & 1 \\ nC_1 & n+3C_1 & n+6C_1 \\ nC_2 & n+3C_2 & n+6C_2 \end{vmatrix}$ then the maximum value of n is **2.** Find the value of λ for which $\begin{vmatrix} 2a_1 + b_1 & 2a_2 + b_2 & 2a_3 + b_3 \\ 2b_1 + c_1 & 2b_2 + c_2 & 2b_3 + c_3 \\ 2c_1 + a_1 & 2c_2 + a_2 & 2c_3 + a_3 \end{vmatrix} = \lambda \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ **3.** Find the co-efficient of x in the expansion of the determinant $\begin{vmatrix} (1+x)^2 & (1+x)^4 & (1+x)^6 \\ (1+x)^3 & (1+x)^6 & (1+x)^9 \\ (1+x)^4 & (1+x)^8 & (1+x)^{12} \end{vmatrix}$ **4.** If $x, y, z \in R$ and $\begin{vmatrix} x & y^2 & z^3 \\ x^4 & y^5 & z^6 \\ x^7 & y^8 & z^9 \end{vmatrix} = 2$ then find the value of

$$\begin{vmatrix} y^5 z^6 (z^3 - y^3) & x^4 z^6 (x^3 - z^3) & x^4 y^5 (y^3 - x^3) \\ y^2 z^3 (y^6 - z^6) & x z^3 (z^6 - x^6) & x y^2 (x^6 - y^6) \\ y^2 z^3 (z^3 - y^3) & x z^3 (x^3 - z^3) & x y^2 (y^3 - x^3) \end{vmatrix}.$$

5. If the system of equations :

$$2x + 3y - z = 0$$
$$3x + 2y + kz = 0$$
$$4x + y + z = 0$$

have a set of non-zero integral solutions then, find the smallest positive value of z.

- **6.** Find $a \in R$ for which the system of equations 2ax 2y + 3z = 0; x + ay + 2z = 0 and 2x + az = 0 also have a non-trivial solution.
- 7. If three non-zero distinct real numbers form an arithmatic progression and the squares of these numbers taken in the same order constitute a geometric progression. Find the sum of all possible common ratios of the geometric progression.

8. Let $\Delta_1 = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$, $\Delta_2 = \begin{vmatrix} 6a_1 & 2a_2 & 2a_3 \\ 3b_1 & b_2 & b_3 \\ 12c_1 & 4c_2 & 4c_3 \end{vmatrix}$ and $\Delta_3 = \begin{vmatrix} 3a_1 + b_1 & 3a_2 + b_2 & 3a_3 + b_3 \\ 3b_1 & 3b_2 & 3b_3 \\ 3c_1 & 3c_2 & 3c_3 \end{vmatrix}$ then $\Delta_3 - \Delta_2 = k\Delta_1$, find k. **9.** The minimum value of determinant $\Delta = \begin{vmatrix} 1 & \cos\theta & 1 \\ -\cos\theta & 1 & \cos\theta \\ -1 & -\cos\theta & 2 \end{vmatrix} \forall \theta \in \mathbb{R}$ is :

10. For a unique value of μ & λ , the system of equations given by

x + y + z = 6 x + 2y + 3z = 14 $2x + 5y + \lambda z = \mu$ has infinitely many solutions, then $\frac{\mu - \lambda}{4}$ is equal to

11. Let $\lim_{n\to\infty} n \sin(2\pi e \lfloor n \rfloor) = k \pi$, where $n \in N$. Find k:

12. If the system of linear equations

 $(\cos\theta) x + (\sin\theta) y + \cos\theta = 0$ $(\sin\theta) x + (\cos\theta) y + \sin\theta = 0$

 $(\cos\theta)x + (\sin\theta)y - \cos\theta = 0$

is consistent, then the number of possible values of $\theta, \theta \in [0, 2\pi]$ is :

1.						Answ	vers	5				le.	1
1.	3	2.	9	3.	0	4.	4	5.	5	6,	2	7	6
8.	3	9.	3	10.	7	11.	2	12.	2		-		0

Chapter 11 - Complex Numbers

COMPLEX NUMBERS

Exercise-1 : Single Choice Problems 7 **1.** Let t_1, t_2, t_3 be three distinct points on circle |t|=1. If θ_1, θ_2 and θ_3 be the arguments of t_1, t_2, t_3 respectively then $\cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1)$ (a) $\geq -\frac{3}{2}$ (b) $\leq -\frac{3}{2}$ (c) $\geq \frac{3}{2}$ (d) ≤ 2 2. The number of points of intersection of the curves represented by $\arg(z-2-7i) = \cot^{-1}(2)$ and $\arg\left(\frac{z-5i}{z+2-i}\right) = \pm \frac{\pi}{2}$ (c) 2 (d) None of these (b) 1 (a) 0 **3.** All three roots of $az^3 + bz^2 + cz + d = 0$, have negative real part, $(a, b, c \in R)$ then : (a) All a, b, c, d have the same sign (b) a, b, c have same sign (d) b, c, d have same sign (c) a, b, d have same sign **4.** Let z_1 and z_2 be two roots of the equation $z^2 + az + b = 0$, z being complex number. Further, assume that the origin, z_1 and z_2 form an equilateral triangle, then : (d) $a^2 = 4b$ (c) $a^2 = 3b$ (b) $a^2 = 2b$ (a) $a^2 = b$ 5. If z and ω are two non-zero complex numbers such that $|z\omega| = 1$, and $\arg(z) - \arg(\omega) = \frac{\pi}{2}$, then $\bar{z}\omega$ is equal to : (c) i (d) -i (b) -1 (a) 1 **6.** If ω be an imaginary n^{th} root of unity, then $\sum_{r=1}^{n} (ar+b) \omega^{r-1}$ is equal to : (c) $\frac{na}{\omega-1}$ (a) $\frac{n(n+1)a}{2\omega}$ (b) $\frac{nb}{1-n}$ (d) None of these

7. If α , β are complex numbers then the maximum value of $\frac{\alpha \overline{\beta} + \overline{\alpha} \beta}{|\alpha\beta|}$ is equal to : (d) less than 1 (a) 1 (c) greater than 2 (b) 2 8. Let z_1, z_2, z_3 and z_4 be the roots of the equation $z^4 + z^3 + 2 = 0$, then the value of $\prod (2z_r + 1)$ is equal to : 9. If $\arg\left(\frac{z-6-3i}{z-3-6i}\right) = \frac{\pi}{4}$, then : (d) 31 (c) 30 (b) Maximum value of |z| is $6\sqrt{2} + 3$ (a) minimum value of |z| is $6\sqrt{2} - 3$ (c) minimum value of |z| is $15\sqrt{2} - 6$ (d) Maximum value of |z| is $15\sqrt{2} + 6$ **10.** If $z_1 \neq -z_2$ and $|z_1 + z_2| = \left| \frac{1}{z_1} + \frac{1}{z_2} \right|$ then : (a) at least one of z_1 , z_2 is unimodular (b) both z_1 , z_2 are unimodular (c) $z_1 \cdot z_2$ is unimodular (d) $z_1 - z_2$ is unimodular **11.** If $|z-i| \le 2$ and $z_1 = 5 + 3i$, then the maximum value of $|iz + z_1|$ is : (a) $5 + \sqrt{13}$ (b) $5 + \sqrt{2}$ (c) 7 (d) 8 **12.** If z_1 , z_2 , z_3 are vertices of a triangle such that $|z_1 - z_2| = |z_1 - z_3|$ then $\arg\left(\frac{2z_1 - z_2 - z_3}{z_3 - z_2}\right)$ is : (c) $\pm \frac{\pi}{2}$ (a) $\pm \frac{\pi}{2}$ (b) 0 (d) $\pm \frac{\pi}{c}$ **13.** It is given that complex numbers z_1 and z_2 satisfy $|z_1| = 2$ and $|z_2| = 3$. If the included angle of their corresponding vectors is 60°, then $\frac{|z_1 + z_2|}{|z_1 - z_2|}$ can be expressed as $\frac{\sqrt{n}}{7}$, where 'n' is a natural number then n =(b) 119 (c) 133 (a) 126 (d) 19 **14.** If all the roots of $z^3 + az^2 + bz + c = 0$ are of unit modulus, then : (b) $|b| \le 3$ (c) |c|=1(a) $|a| \le 3$ (d) All of the above **15.** Let z be a complex number satisfying $\frac{1}{2} \le |z| \le 4$, then sum of greatest and least values of $|z + \frac{1}{z}| \le 4$ is : (a) <u>65</u> (b) $\frac{65}{16}$ (c) $\frac{17}{4}$ (d) 17 **16.** If $|z - 2i| \le \sqrt{2}$, then the maximum value of |3 + i(z - 1)| is : (b) 2√2 (a) $\sqrt{2}$ (c) $2 + \sqrt{2}$ (d) $3 + 2\sqrt{2}$

Complex Numbers

17. Let $x - \frac{1}{x} = (\sqrt{2})i$ where $x = (\sqrt{2})i$	here $i = \sqrt{-1}$. Then the v	ralue of $x^{2187} - \frac{1}{x^{2187}}$ is	s :
(a) $i\sqrt{2}$	(b) $-i\sqrt{2}$	(c) –2	(d) $\frac{i}{\sqrt{2}}$
18. If $z = re^{i\theta}$ ($r > 0 \& 0$ then number of value	$\leq \theta < 2\pi$) is a root of the sof ' θ ' is :	the equation $z^8 - z^7 + z^6$	$-z^{5}+z^{4}-z^{3}+z^{2}-z+1=0$
(a) 6 19 . Let P and O be two n	(b) 7	(c) 8	(d) 9
complex number rep	presenting the point of i	<i>r</i> represented by <i>w</i> ₁ and ntersection of the tange	nts at P and Q is :
(a) $\frac{w_1w_2}{2(w_1+w_2)}$	(b) $\frac{2w_1\overline{w}_2}{w_1 + w_2}$	(c) $\frac{2w_1w_2}{w_1 + w_2}$	(d) $\frac{2\overline{w}_1w_2}{w_1+w_2}$
20. If z_1, z_2, z_3 are com $ z_1 - z_2 ^2 + z_2 - z_3 ^2$	tiplex number, such that $ z_3 - z_1 ^2$ is :	$ z_1 = 2, z_2 = 3, z_3 = 4$, then maximum value of
(a) 58	(b) 29	(c) 87	(d) None of these
21. If $Z = \frac{7+i}{3+4i}$, then fi	and Z^{14} :		
(a) 2^7	(b) $(-2)^7$	(c) $(2^7)i$	(d) $(-2^7)i$
22. If $ Z-4 + Z+4 = of Z $ is :	= 10 , then the difference	e between the maximum	and the minimum values
(a) 2	(b) 3	(c) $\sqrt{41} - 5$	(d) 0

2	1	and and a	3	ee.	and the second			A	nsv	ver	S					2.4			K
1.	(a)	2.	(a)	3.	(c)	4.	(c)	5.	(d)	6.	(c)	7.	(b)	8.	(d)	9.	(b)	10.	(c)
11.	(c)	12.	(c)	13.	(c)	14.	(d)	15.	(c)	16.	(Ъ)	17.	(a)	18.	(c)	19.	(c)	20.	(c)
21.	(c)	22.	(a)					16										1.2.4	

(c)
$$\operatorname{Im}\left(\frac{(z_1 + z_2)(z_2 + z_3)(z_3 + z_1)}{z_1 \cdot z_2 \cdot z_3}\right) = 0$$

(d) If
$$|z_1 - z_2| = \sqrt{2} |z_1 - z_3| = \sqrt{2} |z_2 - z_3|$$
, then $\operatorname{Re}\left(\frac{z_3 - z_1}{z_3 - z_2}\right) = 0$

Ó

6.	If z_1	= a + ib and	$dz_2 = c + id$	are tw	o complex :	numl	bers where a, b	$c, c, d \in F$	$and z_1$	$ = z_2 =1$
	and	$\mathrm{Im}(z_1\bar{z}_2) =$	0. If $w_1 = a$	+ ic and	$1w_2 = b + i$	d, th	en :			
	(a)	$\operatorname{Im}(w_1\overline{w}_2)$	= 0			(b)	$\operatorname{Im}\left(\overline{w}_{1}w_{2}\right)=0$)		
	(c)	$\operatorname{Im}\left(\frac{w_1}{w_2}\right) =$	0			(d)	$\operatorname{Re}\left(\frac{w_1}{\overline{w}_2}\right) = 0$			
7.	The	solutions of	the equation	$n z^4 +$	$4iz^3 - 6z$	² – 4	iz - i = 0 repre	esent		
	vert	ices of a con	vex polygo	n in the	complex p	lane.	The area of th	e polygo	on is :	
	(a)	2 ^{1/2}	(b)	2 ^{3/2}	1 1	(c)	2 ^{5/2}	(d)	2 ^{5/4}	
8.	Lea	st positive ar	gument of	the 4 th	root of the	com	plex number 2	$-i\sqrt{12}$ is	5:	
	(a)	$\frac{\pi}{6}$	(b)	$\frac{\pi}{12}$		(c)	$\frac{5\pi}{12}$	(d)	$\frac{7\pi}{12}$	
9.	Let	ω be the ima	iginary cub	e root o	f unity and	(a +	$b\omega + c\omega^2$) ²⁰¹⁵	= (a + bo	$\omega^2 + c\omega$)	
	whe	ere a, b, c are	e unequal r	eal num	bers. Then	the	value of $a^2 + b$	$^{2}+c^{2}-c^{2}$	ab – bc – 6	ca equals :
	(a)	0	(b)	1		(c)	2	(d)	3	
10.	Let	n be a pos	itive intege	r and a	a complex	num	ber with unit i	nodulus	is a solu	tion of the
	equ	ation $z^n + z$	+1 = 0 the	n the va	lue of n car	n be	:			
	(a)	62	(b)	155		(c)	221	(d)	196	

1.	(c, d)	2.	(b, c, d)	3.	(b, c)	4.	(a, c, d)	5.	(b, c, d)	6.	(a, b, c)
7.	(d)	8.	(c)	9.	(b)	10.	(a, b, c)				

Complex Numbers

7. The locus of point from which tangents drawn to C_1 and C_2 are perpendicular, is : (a) |z-5|=4 (b) |z-3|=2 (c) |z-5|=3 (d) $|z-5|=\sqrt{5}$

Paragraph for Question Nos. 8 to 9

In the Argand plane Z_1 , Z_2 and Z_3 are respectively the vertices of an isosceles triangle ABC with AC = BC and $\angle CAB = 0$. If $I(Z_4)$ is the incentre of triangle, then :

8. The value of $\left(\frac{AB}{IA}\right)^2 \left(\frac{AC}{AB}\right)$ is equal to : (a) $\left|\frac{(Z_2 - Z_1)(Z_1 - Z_3)}{(Z_4 - Z_1)}\right|$ (c) $\left|\frac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 - Z_1)^2}\right|$

(b)
$$\left| \frac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 - Z_1)} \right|$$

(d) $\left| \frac{(Z_2 + Z_1)(Z_3 + Z_1)}{(Z_4 + Z_1)} \right|$

9. The value of $(Z_4 - Z_1)^2 (1 + \cos \theta) \sec \theta$ is :

(a) $(Z_2 - Z_1) (Z_3 - Z_1)$

(c)
$$\frac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 - Z_1)^2}$$

(b)
$$\frac{(Z_2 - Z_1) (Z_3 - Z_1)}{Z_4 - Z_1}$$

(d) $(Z_2 - Z_1) (Z_3 - Z_1)^2$

$$(u) (z_2 - z_1) (z_3 - z_1)$$

Exercise-4 : Matching Type Problems

1. In a $\triangle ABC$, the side lengths *BC*, *CA* and *AB* are consecutive positive integers in increasing order.

	Column-I		Column-ll
(A)	If z_1 , z_2 and z_3 be the affixes of vertices A , B and C respectively in argand plane, such that $\left \arg\left(\frac{z_1 - z_3}{z_2 - z_3}\right) \right = \left 2\arg\left(\frac{z_3 - z_1}{z_2 - z_1}\right) \right $,	(P)	2
(B)	then biggest side of the triangle is Let \vec{a} , \vec{b} and \vec{c} be the position vectors of vertices A, B and C respectively. If $(\vec{c} - \vec{a}) \cdot (\vec{b} - \vec{c}) = 0$ then the value of $ \vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} $ equals to	(Q)	3
(C)	Let the equations $a_1 x + b_1 y + c_1 = 0$ and $a_2 x + b_2 y + c_2 = 0$ represent the lines <i>AB</i> and <i>AC</i> respectively and $\left \frac{a_1 b_2 - a_2 b_1}{a_1 a_2 + b_1 b_2} \right = \frac{4}{3}$ then the value of $s - c$	(R)	4
(D)	(where s is the semiperimeter) $a = BC$, $b = CA$, $c = AB$ If the altitudes of $\triangle ABC$ are in harmonic progression then the side length 'b' can be	(S)	6
	the second s	(T)	12

2. Let *ABCDEF* is a regular hexagon $A(z_1)$, $B(z_2)$, $C(z_3)$, $D(z_4)$, $E(z_5)$, $F(z_6)$ in argand plane where *A*, *B*, *C*, *D*, *E* and *F* are taken in anticlockwise manner. If $z_1 = -2$, $z_3 = 1 - \sqrt{3}i$.

	Column-I	/	Column-II
(A)	If $z_2 = a + ib$, then $2a^2 + b^2$ is equal to	(P)	8
(B)	The square of the inradius of hexagon is	(Q)	7
(C)	The area of region formed by point $P(z)$ lying inside the incircle of hexagon and satisfying $\frac{\pi}{3} \le \arg(z) \le \frac{5\pi}{6}$ is $\frac{m}{n}\pi$, where m, n are relatively prime natural numbers, then $m + n$ is equal to	(R)	5
(D)	The value of $z_4^2 - z_1^2 - z_2^2 - z_3^2 - z_5^2 - z_6^2$ is equal to	(S)	3
	a Application and an	(T)	2

3.

	Column-I	[Column-ll
(A)	Let ω be a non real cube root of unity then the number of distinct elements in the set $\{(1 + \omega + \omega^2 + + \omega^n)^m;$ $n, m \in N\}$ is :	(P)	3
(B)	Let ω and ω^2 be non real cube root of unity. The least possible degree of a polynomial with real co-efficients having roots	(Q)	4
	$2\omega, (2+3\omega), (2+3\omega)^2, (2-\omega-\omega^2)$		da. ·
	15		inter a la construction de la co
(C)	Let $\alpha = 6 + 4i$ and $\beta = 2 + 4i$ are two complex numbers on Argand plane.	(R)	5
	A complex number z satisfying amp $\left(\frac{z-\alpha}{z-\beta}\right) = \frac{\pi}{6}$ moves on a major segment of a circle whose radius is		
(D)	Let z_1 , z_2 , z_3 are complex numbers denoting the vertices of an equilateral triangle <i>ABC</i> having	(S)	7
	circumradius equals to unity. If <i>P</i> denotes any arbitrary point on its circumcircle then the value of		
	$\frac{1}{2}((PA)^2 + (PB)^2 + (PC)^2)$ equals to		

· F +

Exercise-5 : Subjective Type Problems

1. Let complex number 'z' satisfy the inequality $2 \le |z| \le 4$. A point *P* is selected in this region at random. The probability that argument of *P* lies in the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ is $\frac{1}{K}$, then K =

- **2.** Let z be a complex number satisfying $|z-3| \le |z-1|$, $|z-3| \le |z-5|$, $|z-i| \le |z+i|$ and $|z-i| \le |z-5i|$. Then the area of region in which z lies is A square units, where A =
- **3.** Complex number z_1 and z_2 satisfy $z + \overline{z} = 2|z-1|$ and $\arg(z_1 z_2) = \frac{\pi}{4}$. Then the value of $\lim (z_1 + z_2)$ is :
- **4.** If $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 3$ and $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 36$, then $|z_1 + z_2 + z_3|$ is equal to :
- 5. If $|z_1|$ and $|z_2|$ are the distances of points on the curve $5z\overline{z} 2i(z^2 \overline{z}^2) 9 = 0$ which are at maximum and minimum distance from the origin, then the value of $|z_1| + |z_2|$ is equal to :
- **6.** Let $\frac{1}{a_1 + \omega} + \frac{1}{a_2 + \omega} + \frac{1}{a_3 + \omega} + \dots + \frac{1}{a_n + \omega} = i$

where $a_1, a_2, a_3, \dots, a_n \in R$ and ω is imaginary cube root of unity, then evaluate $\sum_{r=1}^{n} \frac{2a_r - 1}{a_r^2 - a_r + 1}.$

- **7.** If $|z_1| = 2$, $|z_2| = 3$, $|z_3| = 4$ and $|2z_1 + 3z_2 + 4z_3| = 9$, then value of $|8z_2z_3 + 27z_3z_1 + 64z_1z_2|^{1/3}$ is :
- **8.** The sum of maximum and minimum modulus of a complex number z satisfying $|z 25i| \le 15, i = \sqrt{-1}$ is S, then $\frac{S}{10}$ is :

Chapter 12 - Matrices

MATRICES
MATRICES
***** Exercise-1: Single Choice Problems
1. Let
$$A = BB^T + CC^T$$
, where $B = \begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}$, $C = \begin{bmatrix} \sin\theta \\ -\cos\theta \end{bmatrix}$; $\theta \in R$. Then A is :
(a) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 1 \\ 0 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
2. Let $A = \begin{pmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}$. The only correct statement about the matrix A is :
(a) A is a zero matrix (b) $A^2 = I$, where I is a unit matrix
(c) A^{-1} does not exis (d) $A = (-1)I$, where I is a unit matrix
(c) A^{-1} does not exis (d) $A = (-1)I$, where I is a unit matrix
(e) A^{-1} does not exis (for $a = \begin{bmatrix} 3; when f = j \\ 0; where f = j \end{bmatrix}$, then $\left\{ \frac{\det(adj(adj A))}{5} \right\}$ equals :
(where $\{\cdot\}$ denotes fractional part function)
(a) $\frac{2}{5}$ (b) $\frac{1}{5}$ (c) $\frac{2}{3}$ (d) $\frac{1}{3}$
4. If $A^{-1} = \begin{bmatrix} \sin^2 \alpha & 0 & 0 \\ 0 & 0 & \sin^2 \beta & 0 \\ 0 & 0 & \sin^2 \gamma \end{bmatrix}$ and $B^{-1} = \begin{bmatrix} \cos^2 \alpha & 0 & 0 \\ 0 & 0 & \cos^2 \gamma \\ 0 & 0 & \cos^2 \gamma \end{bmatrix}$, where α, β, γ are any real
(a) 0 (b) 1 (c) 2 (d) 3
5. If $A = \begin{bmatrix} 3 & -3 & 4 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$; then $A^{-1} =$
(a) A (b) A^2 (c) A^3 (d) A^4
6. Let $M = [a_{ij}]_{3:3}$ where $a_{ij} \in \{-1, 1\}$. Find the maximum possible value of det(M).
(a) 3 (b) 4 (c) 5 (d) 6

7. Let matrix $A = \begin{bmatrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{bmatrix}$; if $xyz = 2\lambda$ and $8x + 4y + 3z = \lambda + 28$, then (adj A) A equals : (a) $\begin{vmatrix} \lambda + 1 & 0 & 0 \\ 0 & \lambda + 1 & 0 \\ 0 & 0 & \lambda + 1 \end{vmatrix}$ (b) $\begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$ (c) $\begin{vmatrix} \lambda^2 & 0 & 0 \\ 0 & \lambda^2 & 0 \\ 0 & 0 & \lambda^2 \end{vmatrix}$ (d) $\begin{bmatrix} \lambda + 2 & 0 & 0 \\ 0 & \lambda + 2 & 0 \\ 0 & 0 & \lambda + 2 \end{bmatrix}$ 8. If the trace of matrix $A = \begin{pmatrix} x-2 & e^x & -\sin x \\ \cos x^2 & x^2 - x + 3 & \ln|x| \\ 0 & \tan^{-1} x & x - 7 \end{pmatrix}$ is zero, then x is equal to : (a) -2 or 3 (b) -3 or -2(c) -3 or 2 (d) 2 or 3 **9.** If $A = [a_{ij}]_{2\times 2}$ where $a_{ij} = \begin{cases} i+j, & i \neq j \\ i^2 - 2j, & i = j \end{cases}$ then A^{-1} is equal to : (a) $\frac{1}{9}\begin{bmatrix} 0 & 3\\ 3 & 1 \end{bmatrix}$ (b) $\frac{1}{9}\begin{bmatrix} 0 & -3\\ 3 & -1 \end{bmatrix}$ (c) $\frac{1}{9}\begin{bmatrix} 0 & -3\\ -3 & -1 \end{bmatrix}$ (d) $\frac{1}{3}\begin{bmatrix} 0 & 3\\ 3 & 1 \end{bmatrix}$ **10.** If $\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, then : (b) $a = \cos 2\theta$, $b = \sin 2\theta$ (a) a = b = 1(c) $a = \sin 2\theta, b = \cos 2\theta$ (d) $a = 1, b = \sin 2\theta$ **11.** A square matrix P satisfies $P^2 = I - P$, where I is identity matrix. If $P^n = 5I - 8P$, then n is : (a) 4 (b) 5 (c) 6 **12.** Let matrix $A = \begin{bmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ where $x, y, z \in N$. If det. (adj. (adj. A)) = $2^8 \cdot 3^4$ then the number of such matrices A is : [Note : adj. A denotes adjoint of square matrix A.] (b) 45 (a) 220 (c) 55 (d) 110 **13.** If A is a 2×2 non singular matrix, then adj (adj A) is equal to : (c) A^{-1} (a) A^2 (b) A (d) $(A^{-1})^2$ **14.** $A = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$ and $MA = A^{2m}$, $m \in N$, $a, b \in R$, for some matrix M, then which one of the following is correct (a) $M = \begin{bmatrix} a^{2m} & b^{2m} \\ b^{2m} & -a^{2m} \end{bmatrix}$ (b) $M = (a^2 + b^2)^m \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (d) $M = (a^2 + b^2)^{m-1} \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$ (c) $M = (a^m + b^m) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

15. Let A be a square matrix satisfying $A^2 + 5A + 5I = 0$. The inverse of A + 2I is equal to : (a) A - 2I(c) A - 3I(d) non-existent (b) A + 3I**16.** Let $A = \begin{bmatrix} 3 & -5 \\ 7 & -12 \end{bmatrix}$ and $B = \begin{bmatrix} 12 & -5 \\ 7 & -3 \end{bmatrix}$ be two given matrices, then $(AB)^{-1}$ is : (d) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (a) $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ **17.** If matrix $A = \begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix}$ then the value of |adj. A | equals to : (a) 2 (b) 3 (c) 4 (d) b **18.** If for the matrix $A = \begin{bmatrix} \cos\theta & 2\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$, $A^{-1} = A^{T}$ then number of possible value(s) of θ in [0, 2π] is: (a) 2 (b) 3 (d) 4 (c) 1 **19.** Let *M* be a column vector (not null vector) and $A = \frac{MM^T}{M^T M}$ the matrix *A* is : (where M^T is transpose matrix of M) (a) idempotant (b) nilpotent (d) none of these (c) involutary **20.** If $A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $P = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, $Q = P^T A P$, find $P Q^{2014} P^T$: (a) $\begin{pmatrix} 1 & 2^{2014} \\ 0 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 4028 \\ 0 & 1 \end{pmatrix}$ (c) $(P^T)^{2013} A^{2014} P^{2013}$ (d) $P^T A^{2014} p$ **21.** If *M* be a square matrix of order 3 such that |M| = 2, then $\left| adj \left(\frac{M}{2} \right) \right|$ equals to : (b) $\frac{1}{4}$ (c) $\frac{1}{8}$ (d) $\frac{1}{16}$ (a) $\frac{1}{2}$ **22.** If A is matrix of order 3 such that |A| = 5 and B = adjA, then the value of $||A^{-1}|(AB)^{T}|$ is equal to (where |A| denotes determinant of matrix A. A^T denotes transpose of matrix A, A^{-1} denotes inverse of matrix A. adj A denotes adjoint of matrix A) (d) $\frac{1}{25}$ (c) 25 (b) 1 (a) 5

2						A	Answers							1					
1.	(c)	2.	(b)	3.	(b)	4.	(b)	5.	(c)	6.	(b)	7.	(b)	8.	(c)	9.	(a)	10.	(b)
11.	(c)	12.	(c)	13.	(b)	14.	(d)	15.	(b)	16.	(b)	17.	(a)	18.	(b)	19.	(a)	20.	(b)
21.	(d)	22.	(b)																

Exercise-2 : One or More than One Answer is/are Correct

- If A and B are two orthogonal matrices of order n and det (A) + det (B) = 0, then which of the following must be correct ?
 - (a) $\det(A + B) = \det(A) + \det(B)$ (b) $\det(A + B) = 0$
- (c) A and B both are singular matrices (d) A + B = 0**2.** Let M be a 3×3 matrix satisfying $M^3 = 0$. Then which of the following statement(s) are true:
- (a) $\left| \frac{1}{2}M^{2} + M + I \right| \neq 0$ (b) $\left| \frac{1}{2}M^{2} - M + I \right| = 0$ (c) $\left| \frac{1}{2}M^{2} + M + I \right| = 0$ (d) $\left| \frac{1}{2}M^{2} - M + I \right| \neq 0$ 3. Let $A_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then : (a) $A_{\alpha+\beta} = A_{\alpha}A_{\beta}$ (b) $A_{\alpha}^{-1} = A_{-\alpha}$ (c) $A_{\alpha}^{-1} = -A_{\alpha}$ (d) $A_{\alpha}^{2} = -I$ 4. $A^{3} - 2A^{2} - A + 2I = 0$ if A =(a) I(b) 2I(c) $\begin{bmatrix} 2 & -1 & 2 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

5. Let A be a 3×3 symmetric invertible matrix with real positive elements. Then the number of zero elements in A^{-1} are less than or equal to :

(a) 0 (b) 1 (c) 2 (d) 3

2	The second				Ansv	vers				6 1
1.	(a, b)	2.	(a, d)	3.	(a, b)	4. (a, b,	c, d)	5.	(d)	

Exercise-3 : Matching Type Problems

1. Consider a square matrix A of order 2 which has its elements as 0, 1, 2 and 4. Let N denotes the number of such matrices.

/	Column-I		Column-II
(A)	Possible non-negative value of det (A) is	(P)	2
(B)	Sum of values of determinants corresponding to N matrices is	(Q)	4
(C)	If absolute value of $(det(A))$ is least, then possible value of $ adj(adj(adj A)) $	(R)	-2
(D)	If det (A) is least, then possible value of det $(4A^{-1})$ is	(S)	0
		(T)	8

2.

	Column-I	/	Column-II	Contraction of the local distribution of the
(A)	If A is an idempotent matrix and I is an identify matrix of the same order, then the value of n , such that	(P)	9	
	$(A+1)^{n} = 1 + 12/A$ is		10	
(B)	If $(I - A)^{-1} = I + A + A^{2} + \dots A^{n}$, then $A^{n} = O$ where <i>n</i> is	Q	10	
(C)	If A is matrix such that $a_{ij} = (i + j)(i - j)$, then A is singular if order of matrix is	(R)	7	
(D)	If a non-singular matrix A is symmetric, such that A^{-1} is also symmetric, then order of A can be	(S)	8	

3.

	Column-l		Column-II
(A)	Number of ordered pairs (x, y) of real numbers satisfying $\sin x + \cos y = 0$, $\sin^2 x + \cos^2 y = \frac{1}{2}$,	(P)	0
(B)	$0 < x < \pi$ and $0 < y < \pi$, is equal to Given $\vec{\mathbf{a}}, \vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ are three vectors such that $\vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ are unit like vectors and $ \vec{\mathbf{a}} = 4$. If $\vec{\mathbf{a}} + \lambda \vec{\mathbf{c}} = 2\vec{\mathbf{b}}$ i, the sum of all possible values of λ is equal to	Q	2

10

1:5-

A

(C)	If $P = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$, $10Q = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & t \\ 1 & -2 & 3 \end{bmatrix}$ and	(R)	4
(D)	$Q = P^{-1}$, then the value of t is equal to If $y = \tan u$ where $u = v - \frac{1}{v}$ and $v = \ln x$, then the	(S)	5
	value of $\frac{dy}{dx}$ at $x = e$ is equal to λ then $[\lambda]$ is equal to (where [-] denotes greatest integer function)		

4.

/	Column-l		Column-II
(A)	If P and Q are variable points on $C_1: x^2 + y^2 = 4$ and $C_2: x^2 + y^2 - 8x - 6y + 24 = 0$ respectively then the maximum value of PQ, is equal to	(P)	1
(B)	Let P, Q, R be invertible matrices of second order such that $A = PQ^{-1}, B = QR^{-1}, C = RP^{-1}$, then the value of det. (<i>ABC</i> + <i>BCA</i> + <i>CAB</i>) is equal to	(Q)	2
(C)	The perpendicular distance of the point whose position vector is (1, 3, 5) from the line $\vec{\mathbf{r}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}} + \lambda(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ is equal to	(R)	9
(D)	Let $f(x)$ be a continuous function in $[-1,1]$ such that $f(x) = \begin{cases} \frac{\ln(px^2 + qx + r)}{x^2} ; & -1 \le x < 0\\ 1 ; & x = 0 ; \\ \frac{\sin(e^{x^2} - 1)}{x^2} ; & 0 < x \le 1 \end{cases}$	(S)	8
	then the value of $(p+q+r)$, is equal to	1. 3.	a second s

5.

/	Column-l		Column-II
(A)	$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \right) $ has the value equal to	(P)	1

Matrices

(B)	Let $A = [a_{ij}]$ be a 3 × 3 matrix where	(Q)	Parls -	2	
	$a_{ij} = \begin{bmatrix} 2\cos t \; ; \; \text{if } i = j \\ 1 \; ; \; \text{if } i - j = 1 \\ 0 \; ; \; \text{otherwise} \end{bmatrix}$				
	then maximum value of det(A) is		1.35		
(C)	Let $f(x) = x^3 + px^2 + qx + 6$; where	(R)		3	
	$p, q \in R$ and $f'(x) < 0$ in largest possible interval $\left(-\frac{5}{3}, -1\right)$ then value of $q - p$ is				
(D)	If $4^x - 2^{x+2} + 5 + b-1 - 3 = \sin y $;	(S)		4	
· •	$x, y, b \in R$				
	then the sum of the possible values of b is λ then (λ + 1) equals				

.

1.	Answers
1. A	$A \rightarrow P, Q, T; B \rightarrow S; C \rightarrow P, R; D \rightarrow R$
2. A	$A \rightarrow R; B \rightarrow P, Q, S; C \rightarrow P, R; D \rightarrow P, Q, R, S$
3. A	$A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$
4. A	$A \rightarrow S; B \rightarrow R; C \rightarrow P; D \rightarrow Q$
5. A	$A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow R$

Exercise-4 : Subjective Type Problems

- **1.** A and B are two square matrices. Such that $A^2B = BA$ and if $(AB)^{10} = A^k \cdot B^{10}$. Find the value of k 1020.
- **2.** Let A_n and B_n be square matrices of order 3, which are defined as :
 - $A_n = [a_{ij}] \text{ and } B_n = [b_{ij}] \text{ where } a_{ij} = \frac{2i+j}{3^{2n}} \text{ and } b_{ij} = \frac{3i-j}{2^{2n}} \text{ for all } i \text{ and } j, 1 \le i, j \le 3.$ If $l = \lim_{n \to \infty} \text{Tr.} (3A_1 + 3^2A_2 + 3^3A_3 + \dots + 3^nA_n) \text{ and}$
 - $m = \lim_{n \to \infty} \text{Tr.} (2B_1 + 2^2B_2 + 2^3B_3 + \dots + 2^nB_n)$, then find the value of $\frac{(l+m)}{3}$
 - [Note : Tr. (P) denotes the trace of matrix P.]
- **3.** Let *A* be a 2×3 matrix whereas *B* be a 3×2 matrix. If det. (*AB*) = 4, then the value of det. (*BA*), is :
- Find the maximum value of the determinant of an arbitrary 3×3 matrix A, each of whose entries a_{ij} ∈ {-1, 1}.
- 5. The set of natural numbers is divided into array of rows and columns in the form of matrices as
 - $A_{1} = [1], A_{2} = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}, A_{3} = \begin{bmatrix} 6 & 7 & 8 \\ 9 & 10 & 11 \\ 12 & 13 & 14 \end{bmatrix} \text{ and so on. Let the trace of } A_{10} \text{ be } \lambda. \text{ Find unit digit of } \lambda?$

Chapter 13 - Permutation and Combination

PERMUTATION AND COMBINATIONS

	Exe	rcise-1 : Single	Cho	ice Problems	0GR	1	5-2	AND
1.	The	number of 3-digit	num	bers containing th	e dig	it 7 exactly once :		
	(a)	225	(b)	220	(c)	200	(d)	180
2.	Let f: A	$A = \{x_1, x_2, x_3, x_4 \\ \rightarrow B \text{ that are ont}$	x_{5}	x_6, x_7, x_8 , $B =$ there are exactly	{y ₁ , three	y_2, y_3, y_4 . The elements x in A s	total uch t	number of function that $f(x) = y_1$ is :
	(a)	11088	(b)	10920	(c)	13608	(d)	None of these
3.	The form	number of arrang n three consecutive	emer e terr	nts of the word "II ns of an A.P. is :	DIOTS	S" such that vowel	s are	at the places which
	(a)	36	(b)	72	(c)	24	(d)	108
4.	Con the	sider all the 5 digit number of number	num s, wl	bers where each of hich contain all the	the c four	ligits is chosen fron digits is :	1 the	set {1, 2, 3, 4} . Then
	(a)	240	(b)	244	(c)	586	(d)	781
5.	Hov alph	v many ways are t nabetical order ?	here	to arrange the let	ters	of the word "GARI	DEN"	' with the vowels in
	(a)	120	(Ъ)	480	(c)	360	(d)	240
6.	Ifα	$\neq \beta$ but $\alpha^2 = 5\alpha - 3$	Band	$\beta^2 = 5\beta - 3$ then the	ne eq	uation having α / β	and β	3/α as its roots is :
	(a)	$3x^2 - 19x + 3 = 0$			(Ъ)	$3x^2 + 19x - 3 = 0$		
	(c)	$3x^2 - 19x - 3 = 0$			(d)	$x^2-5x+3=0$		
7.	A st leas	udent is to answer t 4 from the first fi	10 c ve qu	out of 13 questions restions. The num	s in a ber o	n examination suc f choices available	h tha to hi	at he must choose at im is :
	(a)	140	(b)	196	(c)	280	(d)	346
8.	Let	set $A = \{1, 2, 3, \dots$ lements of all poss	., 22] ible s	• . Set <i>B</i> is a subset subsets <i>B</i> .	of A	and B has exactly 1	1 ele	ements, find the sum
	(a)	252 ²¹ C ₁₁			(b)	$230^{21}C_{10}$		
	(c)	253 ²¹ C ₉			(d)	253 ²¹ C ₁₀		

Or.

.

9	. The	value of $\left[2009! + 2008! +$	200	$\left[\frac{6!}{7!}\right] =$									
	([·] denotes greatest integer function.)												
	(a)	2009	(b)	2008	(c)	2007	(d)	1					
10	If p	$p_1, p_2, p_3, \dots, p_n$	m+1	are distinct prime	e nu	imbers. Then the	nu	mber of factors of					
	$p_1^n p$	$p_2 p_3 \dots p_{m+1}$ is :											
*	(a)	m(n+1)	(b)	$(n+1)2^{m}$	(c)	$n \cdot 2^m$	(d)	2 ^{<i>nm</i>}					
11.	11. A basket ball team consists of 12 pairs of twin brothers. On the first day of training, all 24												
	players stand in a circle in such a way that all pairs of twin brothers are neighbours. Number of												
	way	rs this can be done	is :					11					
	(a)	$(12)! 2^{11}$	(b)	$(11)! 2^{12}$	(c)	$(12)! 2^{12}$	(d)	$(11)! 2^{11}$					
12.	Let	m' denotes the nu	mber	of four digit number	ers su	uch that the left mo	st dig	git is odd, the second					
	digi	t is even and all fo	our d	igits are different a	nd 'n	denotes the num	per o	f four digit numbers					
	such	n that left most dig	git is	even, second digit i	is od	d and all four digit	s are	different. If $m = nk$,					
	ther	h k equals :		2		F		1					
	(a)	4 5	(b)	3 .	(c)	<u>5</u> 4	(d)	$\frac{1}{3}$					
13.	The	number of three of	lioit	numbers of the form	m xv	$\frac{1}{2}$ such that $x < y$ as	nd z	< v is :					
10.	(a)	156	(h)	204	(c)	240	(d)	276					
14.	A ar	nd B are two sets a	nd tl	heir intersection ha	s 3 e	lements. If A has 1	920	more subsets than B					
	has,	then the number	of el	ements of A union	B is :	•							
	(a)	12	(b)	14	(c)	15	(d)	16					
15.	All p	ossible 120 perm	utati	ons of WDSMC are	arra	nged in dictionary	orde	r, as if each were an					
	ordi	nary five-letter wo	ord. 7	The last letter of the	e 86 ^t	^h word in the list,	is :						
	(a)	W	(b)	D ,	(c)	Μ	(d)	С					
16.	The	number of permu	tatio	n of all the letters A	AAAA	BBBC in which the	e A's	appear together in a					
	bloc	k of 4 letters or th	e B's	appear together in	a bl	ock of 3 letters is :							
	(a)	44	(b)	50	(c)	60	(d)	89					
17	Num	ber of zero's at th	e enc	$\frac{30}{10}(n)^{n+1}$ is :									
1/.	Ivuii	iber of zero s at an	0 011	n=5									
	(a)	111	(b)	147	(c)	137	(d)	None of these					
18.	The	number of positive	e inte	egral pairs (x, y) sa	tisfv	ing the equation y	.2 ,	2					
10.	(a)	0	ው	1	(c)	2		= 33/01s:					
10	(a)	U	(D) f cold	I octing 'n' things ou	(C)	2 (2m) this of 1	(d)	4					
19.	alike	and 'n' are of sec	ond	kind and alike and	the	rest unlike in	h 'n	are of one kind and					
		n n are or see		$(n-1)2^{n-1}$	(a)	$(n + 1) n^{-1}$							
	(a)	11 2	(0)	$(n-1)^2$	(0)	$(n+1)2^{n+1}$	(d)	$(n+2)2^{n-1}$					

226

:

20.											
	If x , y , z are three	ee natural ni	umbers in A	Psuc	h tha	tr + v +	z = 30. t	nen th	e possibl	e number	r of
	ordered triplet ((x, y, z) is :			n the	en y i	2 00, 1		r		
	(a) 18	ക്ര	19		(c)	20		(d)	21		
21.	A dice is rolled 4	times, the n	umbers an	noarin	(C) a aro	listed T	'he numbe	er of d	ifferent t	throws si	ıch
	that the largest	number app	earing in the	ne list	is not	13100.1	ne numbe	.i oi u	merene		
	(a) 175	(h)	625	10 1100	(c)	1040		(d)	1121		
22.	Let <i>m</i> denotes	the number	of wave i	n whi	h E	1040	d E airla	can h	arrand	od in a l	ino
	alternately and	n denotes th	e number o	of way	s in v	which 5	hove and	5 oirls	an be a	rranged i	n a
	cirlce so that no	two boys ar	e together.	if $m =$	$= kn t^{1}$	hen the	value of k	is :	un be u		
	(a) 2	(b)	5		(c)	6	varae or n	(b)	10		
23.	Number of way	s in which	4 students	con di	(C)	0 7 ohoir i	-	(u)	e is no	empty ch	air
	between any tw	o students i	s ·	call SI	ιm /	chair i	11 a 10w, 1		E 15 110	empty ch	lan
	(a) 24	(h)	28		(0)	70		(4)	06	6	
			30		(C)	12		(a)	90		
24.	Number of zero	's at the end	s of $\prod_{n=5}^{\infty} (n)$) ⁿ⁺¹ is	:						
	(a) 111	(b)	147		(c)	137		(d)	None		
25.	The number of english languag	words of fou (e) with repe	ir letters co etition pern	nsistin nitted i	ig of e is :	equal nu	mber of v	vowels	and cor	isonants	(of
	(a) 51030	(b)	50030		(c)	63050		(d)	66150		
26.	Ten different le	tters of an a	lphabet ar	e giver	n. Wo	ords with	n five lette	ers are	e formed	l with the	ese
	(2) 30240	(h)	60760			60790	ist one let				
	(a) 50240	digit numb	09700	a at los		09780			99784		
4/.	Number of four			I at lea	ist on		occurs mo	re tha	n once, i	IS:	
	101 1161	(6)	4644		(C)	4446			6444		
	(a) 4404	(0)	Co. 20080310000.		. ,	,		(a)			
28.	In a game of mi least one vertex squares are un configuration of	inesweeper, with that sq determined blank squa	a number o juare. A squ . In how res:	on a so iare wi many	uare ith a 1 ways	denotes number s can tl	the num may not h he mines	ber of ave a be p	mines t mine, ar laced ir	hat share nd the bla 1 the giv	e at ank ven
28.	In a game of mi least one vertex squares are un configuration of	inesweeper, with that sq determined n blank squa	a number o juare. A squ . In how ares:	on a so iare wi many	uare ith a 1 way:	denotes number s can tl	s the num may not h he mines	(d) ber of lave a be p	mines t mine, ar laced ir	hat share nd the bla 1 the giv	e at ank ven
28.	(a) 4464 In a game of mi least one vertex squares are un configuration of	inesweeper, with that sq idetermined. n blank squa	a number of Juare. A squ . In how ares:	on a so are wi many	quare ith a 1 way:	denotes number s can ti	s the num may not h he mines	(d) ber of ave a be p	mines t mine, an laced ir	hat share nd the bla 1 the giv	e at ank ven
28.	(a) 4464 In a game of mi least one vertex squares are un configuration of	inesweeper, with that squadetermined. blank squa	a number of luare. A squ . In how ures:	on a so nare wi many	quare ith a r way:	denote: number s can t	s the num may not h he mines	(d) ber of lave a be p	mines t mine, ar laced ir	hat share nd the bla 1 the giv	e at ank ven
28.	(a) 4464 In a game of mi least one vertex squares are un configuration of	inesweeper, with that sq idetermined n blank squa	a number of uare. A squ . In how ures:	on a so nare wi many	quare ith a r way:	denote: number s can ti	s the num may not h he mines	(d) ber of aave a be p	mines t mine, ar laced ir	hat share nd the bla 1 the giv	e at ank ven
28.	(a) 4464 In a game of mi least one vertex squares are un configuration of	inesweeper, with that sq idetermined n blank squa	a number of uare. A squ . In how ures: 2	on a so nare wi many	ith a name	denote: number s can tl	s the num may not h he mines	(d) ber of have a be p	mines t mine, ar laced ir	hat share nd the bla 1 the giv	e at ank ven
28.	 (a) 4464 In a game of mileast one vertex squares are un configuration of (a) 120 	(b) inesweeper, with that sq idetermined. n blank squa	a number of juare. A squ . In how ures: 2 105	on a so lare wi many	quare ith a way: 1 (c)	denote: number s can tl 2 95	s the num may not h he mines	(d) ber of iave a be p (d)	mines t mine, an laced ir	hat share nd the bla 1 the giv	e at ank ven
28.	 (a) 1404 In a game of mileast one vertex squares are un configuration of (a) 120 Let the product of r is : 	(b) inesweeper, with that sq idetermined n blank squa (b) of all the divi	a number of luare. A squ . In how ires: 2 105 isors of 144	on a so hare with many 0 be P	1 (c)	denote: number s can tl 2 95 is divisi	s the num may not h he mines	(d) ber of lave a be p (d) , then	mines t mine, an olaced in 100 the max	hat share nd the bla n the giv	e at ank ven
28.	 (a) 4464 In a game of mileast one vertex squares are unconfiguration of (a) 120 Let the product of <i>x</i> is : (a) 28 	(b) inesweeper, with that sq idetermined n blank squa (b) of all the divi	a number of Juare. A squ . In how ares: 2 105 Isors of 144	on a so nare wi many	1 (c) (c)	denote: number s can tl 2 95 is divisi	s the num may not h he mines	(d) ber of lave a be p (d) , then	100 the max	hat share nd the bla n the giv cimum va	e at ank ven

30. Let N be the number of 4-digit numbers which contain not more than 2 different digits. The num of the divisor of V is										
	sum	1 of the digits of N	1S :				(4)	21		
~ 1	(a)	18	(b)	19	(c)	20	(a)	21		
31.	The any	number of differe	nt pe	rmutations of all t	he le	etters of the word e neither both vov	PERN vels n	or both identical is :		
	(a)	63×16 ×15	(h)	8×16 ×15	(c)	$57 \times 15 \times 15$	(d)	7 × 7 × 5		
32.	Ab	atsman can score (3 4 or 6 mms fr	(c) om a	ball The number	of di	fferent sequences in		
	whi	ch he can score ex	actly	30 runs in an over	ofs	ix balls :		•		
	(a)	4	(h)	72	(c)	56	(d)	71		
33.	Ab	atsman can score (123	or 4 runs for each	h hal	Il he receives If N	is the	e number of ways of		
	sco	ring a total of 20 r	uns in	one over of six ba	alls t	then N is divisible	bv:			
	(a)	5	(b)	7	(c)	14	(b)	16		
34.	The	number of non-ne	oativ	ve integral solution	sof	the equation $x + y$	+ 7 =	= 5 is :		
	(a)	20	(h)	10	(c)	21	(d)	25		
35	The	number of soluti	ione	of the equation x	(0)	21 + x + x + x	- 101	where r's are odd		
00.	nat	ural numbers is :	10113	of the equation x_1	[+ J	$2 + x_3 + x_4 + x_5 -$	- 101,	where x _i s are out		
	(a)	¹⁰⁵ C ·	(ኩ)	⁵² C-	(c)	⁵² C .	(4)	⁵⁰ C		
96	(u)	ondiname dias is n	-11-4	4 times numbers	(0)	og an thom o	(u) 	the second second		
30.	An	erent throws such	that	the largest numbers	r app	pearing on them is	NOT	d is :		
	(a)	175	(h)	625	(c)	1121	(d)	1040		
97	(a)	1/J	word	s can be formed usi	ng th	ne letters of word W	(u) ЛОДА	NT if latter Wisser		
3/.	incl	uded are .	word	s can be formed us	ing u		IDRA	INT II letter V is must		
	(a)	840	(h)	480	(c)	120	(d)	240		
20	(a) The	number of rectai	noles	that can be obtai	ned	by joining four of	(u) f the	twolve westing of a		
30.	12-	sided regular poly	gon is		neu	by joining tour of	uie	twelve vertices of a		
	(a)	66	(b)	30	(c)	24	(d)	15		
39.	Nu	mber of five digit in	ntege	ers, with sum of the	e dig	its equal to 43 are	:			
	(a)	5	(b)	10	(c)	15	(d)	35		
1	-1			Answ	/er	S				
			1							
1	(a)	2. (d) 3. (d)	1)	4. (a) 5. (c)	6.	(a) 7. (b)	8. (d	l) 9. (b) 10. (b)		

the second s	_	And the statistical statistical states		ADDRESS OF ADDRESS		AND A COLOR MAN				()									
1.	(a)	2.	(d)	8.	(d)	4.	(a)	5.	(c)	6.	(a)	7.	(Ъ)	8.	(d)	9.	(b)	10.	(b)
11.	(b)	12.	(c)	13.	(d)	14.	(c)	15.	(Ъ)	16.	(a)	17.	(c)	18.	(a)	19.	(d)	20.	(b)
21.	(d)	22.	(d)	23.	(d)	24.	(c)	25.	(d)	26.	(b)	27.	(a)	28.	(c)	29.	(b)	30.	(a)
81.	(c)	82.	(d)	33.	(d)	84.	(c)	35.	(c)	36.	(c)	37.	(b)	38.	(d)	39.	(c)		

Permutation and Combinations

Exercise-2 : One or More than One Answer is/are Correct

1. The number of 5 letter words formed with the letters of the word CALCULUS is divisible by :(a) 2(b) 3(c) 5(d) 7

2. The coefficient of x^{50} in the expansion of $\sum_{k=0}^{100} {}^{100}C_k(x-2)^{100-k} 3^k$ is also equal to :

- (a) Number of ways in which 50 identical books can be distributed in 100 students, if each student can get atmost one book.
- (b) Number of ways in which 100 different white balls and 50 identical red balls can be arranged in a circle, if no two red balls are together.
- (c) Number of dissimilar terms in $(x_1 + x_2 + x_3 + ... + x_{50})^{51}$.
- (d) $\frac{2 \cdot 6 \cdot 10 \cdot 14 \dots 198}{50!}$
- **3.** Number of ways in which the letters of the word "NATION" can be filled in the given figure such that no row remains empty and each box contains not more than one letter, are :

.

Exercise-3 : Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Consider all the six digit numbers that can be formed using the digits 1, 2, 3, 4, 5 and 6, each digit being used exactly once. Each of such six digit numbers have the property that for each digit, not more than two digits smaller than that digit appear to the right of that digit.

- 1. A six digit number which does not satisfy the property mentioned above, is :
 (a) 315426
 (b) 135462
 (c) 234651
 (d) None of these
- 2. Number of such six digit numbers having the desired property is :
 (a) 120
 (b) 144
 (c) 162
 (d) 210

1.			An	swers		11
1. (d)	2. (c)					

Exercise-4 : Matching Type Problems

1. All letters of the word BREAKAGE are to be jumbled. The number of ways of arranging them so that :

/	Column-I		Column-II
(A)	The two A's are not together	(P)	720
(B)	The two E's are together but not two A's	(Q)	1800
(C)	Neither two A's nor two E's are together	(R)	5760
(D)	No two vowels are together	(S)	6000
		(T)	7560

2. Consider the letters of the word MATHEMATICS. Set of repeating letters = { M, A, T}, set of non repeating letters = { H, E, I, C, S }:

/	Column-I	/		Column-II	
(A)	The number of words taking all letters of the given word such that atleast one repeating letter is at odd position is	(P)	om e Gane	28 · (7 !)	
(B)	The number of words formed taking all letters of the given word in which no two vowels are together is	(Q)		$\frac{(11)!}{(2!)^3}$	• • • •
(C)	The number of words formed taking all letters of the given word such that in each word both M's are together and both T's are together but both A's are not together is	(R)		210(7!)	*
(D)	The number of words formed taking all letters of the given word such that relative order of vowels and consonants does not change is	(S)		840 (7!)	
		(T)		$\frac{4!7!}{(2!)^3}$	

1	Ansv	vers	and the P
1. $A \rightarrow T$; $B \rightarrow Q$; C	\rightarrow R; D \rightarrow P	,	
2. $A \rightarrow Q$; $B \rightarrow R$; C	\rightarrow P; D \rightarrow T		

: 1

Exercise-5 : Subjective Type Problems

- 1. The number of ways in which eight digit number can be formed using the digits from 1 to 9 without repetition if first four places of the numbers are in increasing order and last four places are in decreasing order is N, then find the value of $\frac{N}{70}$.
- 2. Number of ways in which the letters of the word DECISIONS be arranged so that letter N be somewhere to the right of the letter "D" is $\frac{|9|}{\lambda}$. Find λ .
- 4. There are 10 stations enroute. A train has to be stopped at 3 of them. Let N be the ways in which the train can be stopped if atleast two of the stopping stations are consecutive. Find the value of \sqrt{N} .
- 5. There are 10 girls and 8 boys in a class room including Mr. Ravi, Ms. Rani and Ms. Radha. A list of speakers consisting of 8 girls and 6 boys has to be prepared. Mr. Ravi refuses to speak if Ms. Rani is a speaker. Ms. Rani refuses to speak if Ms. Radha is a speaker. The number of ways the list can be prepared is a 3 digit number $n_1 n_2 n_3$, then $|n_3 + n_2 n_1| =$
- **6.** Nine people sit around a round table. The number of ways of selecting four of them such that they are not from adjacent seats, is
- 7. Let the number of arrangements of all the digits of the numbers 12345 such that atleast 3 digits will not come in it's original position is *N*. Then the unit digit of *N* is
- 8. The number of triangles with each side having integral length and the longest side is of 11 units is equal to k^2 , then the value of 'k' is equal to
- **9.** 8 clay targets are arranged as shown. If *N* be the number of different ways they can be shot (one at a time) if no target can be shot until the target(s) below it have been shot. Find the ten's digit of *N*.

- 10. There are n persons sitting around a circular table. They start singing a 2 minute song in pairs such that no two persons sitting together will sing together. This process is continued for 28 minutes. Find n.
- **11.** The number of ways to choose 7 distinct natural numbers from the first 100 natural numbers such that any two chosen numbers differ atleast by 7 can be expressed as ${}^{n}C_{7}$. Find the number of divisors of *n*.
- **12.** Four couples (husband and wife) decide to form a committee of four members. The number of different committees that can be formed in which no couple finds a place is λ , then the sum of digits of λ is :

- **13.** The number of ways in which 2*n* objects of one type, 2*n* of another type and 2*n* of a third type can be divided between 2 persons so that each may have 3*n* objects is $\alpha n^2 + \beta n + \gamma$. Find the value of $(\alpha + \beta + \gamma)$.
- **14.** Let N be the number of integral solution of the equation x + y + z + w = 15 where $x \ge 0, y > 5$, $z \ge 2$ and $w \ge 1$. Find the unit digit of N.

1.	9	2.	8	3.	8	4.	8	5.	5	6.	9	7.	9
	6	9.	6	10.	7	11.	7	12.	7	13.	7	14.	

Chapter 14 - Binomial Theorem

Exercise-1 : Single Choice Problems **1.** Let $N = 2^{1224} - 1$, $\alpha = 2^{153} + 2^{77} + 1$ and $\beta = 2^{408} - 2^{204} + 1$. Then which of the following statement is correct ? (a) α divides N but β does not (b) β divides N but α does not (c) α and β both divide N (d) neither α nor β divides N **2.** If $(1 + x + x^2)^n = \sum_{r=1}^{2n} a_r x^r$, then $a_r - {}^nC_1 \cdot a_{r-1} + {}^nC_2 a_{r-2} - {}^nC_3 a_{r-3} + \dots + (-1)^r {}^nC_r a_0$ is equal to : (r is not multiple of 3) (a) 0 (b) ⁿC_r (c) a. (d) 1 **3.** The coefficient of the middle term in the binomial expansion in powers of x of $(1 + \alpha x)^4$ and of $(1-\alpha x)^6$ is the same if α equals : (a) $-\frac{5}{3}$ (b) $\frac{3}{5}$ (c) $\frac{-3}{10}$ (d) **4.** If $(1+x)^{2010} = C_0 + C_1 x + C_2 x^2 + \dots + C_{2010} x^{2010}$ then the sum of series $C_2 + C_5 + C_8 + \dots + C_{2009}$ equals to : (a) $\frac{1}{2}(2^{2010}-1)$ (b) $\frac{1}{3}(2^{2010}-1)$ (d) $\frac{1}{3}(2^{2009}-1)$ (c) $\frac{1}{2}(2^{2009}-1)$ **5.** Let $\alpha_n = (2 + \sqrt{3})^n$. Find $\lim_{n \to \infty} (\alpha_n - [\alpha_n]) ([\cdot]]$ denotes greatest integer function) (b) $\frac{1}{2}$ (c) $\frac{1}{2}$ (a) 1 (d) $\frac{2}{3}$ 6. The number $N = {}^{20}C_7 - {}^{20}C_8 + {}^{20}C_9 - {}^{20}C_{10} + \dots - {}^{20}C_{20}$ is not divisible by : (a) 3 (b) 7 (c) 11 (d) 19

BIONMIAL THEOREM

7. The value of the expression $\log_2\left(1 + \frac{1}{2}\sum_{k=1}^{11} {}^{12}C_k\right)$: (a) 11 (b) 12 (d) 14 8. The constant term in the expansion of $\left(x + \frac{1}{x^3}\right)^{12}$ is : 9. If $\frac{3}{4!} + \frac{4}{5!} + \frac{5}{6!} + \dots + 50$ term $= \frac{1}{3!} - \frac{1}{(k+3)!}$, then sum of coefficients in the expansion $(1+2x_1+3x_2+\ldots+100x_{100})^k$ is: (where x_1 , x_2 , x_3 ,...., x_{100} are independent variables) (a) (5050)⁴⁹ (b) (5050)⁵¹ (c) (5050)⁵² (d) (5050)⁵⁰ **10. Statement-1:** The remainder when $(128)^{(128)^{128}}$ is divided by 7 is 3. because Statement-2: (128)¹²⁸ when divided by 3 leaves the remainder 1. (a) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1. (b) Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1. (c) Statement-1 is true, statement-2 is false. (d) Statement-1 is false, statement-2 is true. **11.** If n > 3, then $xyz^nC_0 - (x-1)(y-1)(z-1)^nC_1 + (x-2)(y-2)(z-2)^nC_2 - 2$ $(x-3)(y-3)(z-3) {}^{n}C_{3} + \dots + (-1)^{n}(x-n)(y-n)(z-n) {}^{n}C_{n}$ equals: (b) x + y + z(a) xyz (d) 0 (c) xy + yz + zx**12.** If $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the n; nth roots of unity, $\alpha_r = e \frac{i2(r-1)\pi}{n}$, $r = 1, 2, \ldots n$ then ${}^{n}C_{1}\alpha_{1} + {}^{n}C_{2}\alpha_{2} + \dots + {}^{n}C_{n}\alpha_{n}$ is equal to: (a) $\left(1+\frac{\alpha_2}{\alpha_1}\right)^n - 1$ (b) $\frac{\alpha_1}{2}[(1+\alpha_1)^n - 1]$ (c) $\frac{\alpha_1 + \alpha_{n-1} - 1}{2}$ (d) $(\alpha_1 + \alpha_{n-1})^n - 1$ **13.** The remainder when $2^{30} \cdot 3^{20}$ is divided by 7 is : (a) 1 (b) 2 (**14.** ${}^{26}C_0 + {}^{26}C_1 + {}^{26}C_2 + \dots + {}^{26}C_{13}$ is equal to : (c) 4 (d) 6 (a) $2^{25} - \frac{1}{2} \cdot {}^{26}C_{13}$ (b) $2^{25} + \frac{1}{2} \cdot {}^{26}C_{13}$ (c) 2^{13} (d) $2^{26} + \frac{1}{2} \cdot {}^{26}C_{13}$

15	. If a	_r is t	he c	oeffic	ient	of x'	'n	the e	xpar	sion	of (1	l + x +	$x^{2})'$	ⁿ (n ∈	N).	Then	the	valu	e of
-	(a ₁	+ 4a4	+70	a ₇ + 1	.0a ₁₀	+) is	equa	al to	:							1		
	(a)	3 ^{<i>n</i>-1}				(b) 2	n			(c)	$\frac{1}{3}$.	2 ^{<i>n</i>}			(d)	$n \cdot 3^{n}$	-1		
16	. Let($\binom{n}{k}$ re	epres	sents t	the c	ombir	natio	n of ' <i>r</i>	ı'thi	ngs tal	ken '	k'at a	time	, then	the	value	ofth	e sun	n
				(99 97)+(98) 96)+	(97) (95))+	+($\binom{3}{1} + \left(\begin{array}{c} \end{array} \right)$	2)e	quals:				-			
	(a)	$\begin{pmatrix} 99\\97 \end{pmatrix}$)			(b) (100 98)			(c)	$\begin{pmatrix} 9\\ 9\\ 9 \end{pmatrix}$	9) 8)		((d) ((100) (97))		
17.	The	last o	ligit	of 9!	+ 39	966 is	:												
	(a)	1				(b) 3				(c)	7			((d) 9	9			
18.	Let	x be t	he7	th terr	m fro	m the	begi	inning	gand	y be	the 7	th terr	n fro	m the	end	in the	e exp	ansio	on of
	(31/	$\frac{3}{4} + \frac{1}{4}$	$\left(\frac{1}{1/3}\right)$	ⁿ . If y	y = 1	2x the	en th	e valı	ue of	n is :									
	(a)	9			2	(b) 8	1			(c)	10			((d)	11			
19.	The	expre	essio	n (¹⁰ 0	$(2_0)^2$	-(10	$(C_1)^2$	+ (10	C2)	² –	+ ($^{10}C_{8})$	² - (¹⁰ C ₉)) ² + ($({}^{10}C_{10}$	₀) ²	equa	ls :
	(a)	10 !				(b) (¹⁰ C ₅) ²		(c)	_10	C ₅		((d)	${}^{10}C_{5}$			
20.	The	ratio	of th	e co-e	effici	ents to	o x ¹⁵	to th	e ter	m ind	epen	dent o	of <i>x</i> ir	1 the e	expai	nsion	of	(² + -	$\left(\frac{2}{x}\right)^{15}$
	1S :	1 • 1				(h) 1	· 32			(c)	7	64			(4)	7.1	~		
91	(a) In th	1.4	anci	on of	(1 +	$(b)^{2}(1)^{2}(1)$	+ v	3(1 +	$(z)^4$	(1 + w)) ⁵ t	he sur	n of t	the co	(a)	/:1	6		
21.	deor	ee 12	is :	011 01	(1)	., (-		1	~,	(,,,	ine our			eme	lent c		etern	15 01
	(a)	61			(b) 7	1			(c)	81			('d) (b	01			
	n	$(r^3$	$+2r^{2}$	² + 3r	+ 2		24	$+2^{3}$	+ 2	$^{2}-2$					(u) .	71			
22.	If $\sum_{r=0}^{r=0}$		(r +	- 1) ²	,) °,	=	-	3									•	
	then	the v	alue	of n i	is :												• •		
	(a)	2			(b) 2 ²	2			(c)	2 ³			((d)	2 ⁴	Ċ.		
1	77/	-	Con Ale ma					Δ	nsv	Nor	.				-	and the second second	- Constanting		
1							100 C		101	101							A STREET STREET	ALC: NOT THE OWNER.	
Land		and the	- المالي -	- in the								and a second state	Const William		and and			A second	1
1.	(c)	2.	(a)	3.	(c)	4.	(b)	5.	(a)	6.	(c)	7.	(a)	8.	(d)	0	(4)	10	(d)

21. (d) 22. (a)

237 Exercise-2 : One or More than One Answer is/are Correct **1.** The number $N = {}^{20}C_7 - {}^{20}C_8 + {}^{20}C_9 - {}^{20}C_{10} + \dots - {}^{20}C_{20}$ is divisible by : (a) 3 (b) 4 (c) 7 (d) 19 **2.** If $(1 + x + x^2 + x^3)^{100} = a_0 + a_1 x + a_2 x^2 + \dots + a_{300} x^{300}$ then which of the following statement(s) is/are correct ? (a) $a_1 = 100$ (b) $a_0 + a_1 + a_2 + \dots + a_{300}$ is divisible by 1024 (c) coefficients equidistant from beginning and end are equal (d) $a_0 + a_2 + a_4 + \dots + a_{300} = a_1 + a_3 + a_5 + \dots + a_{299}$ **3.** $\sum_{r=0}^{4} (-1)^{r} {}^{16}C_r$ is divisible by : (a) 5 (c) 11 (b) 7 (d) 13 **4.** The expansion of $\left(\sqrt{x} + \frac{1}{2\sqrt[4]{x}}\right)^n$ is arranged in decreasing powders of x. If coefficient of first three terms form an A.P. then in expansion, the integral powers of x are : (a) 0 (b) 2 (c) 4 (d) 8 5. Let $(1 + x^2)^2 (1 + x)^n = \sum_{k=0}^{n+4} a_k x^k$. If a_1, a_2, a_3 are in AP, then n is (given that ${}^nC_r = 0$, if n < r): (c) 3 (d) 2 (a) 6 **6.** $\sum_{i=0}^{n} \sum_{i=0}^{n} \sum_{k=0}^{n} {n \choose i} {n \choose j} {n \choose k}, \ {n \choose r} = {}^{n}C_{r}$: (a) is less than 500 if n = 3(b) is greater than 600 if n = 3(c) is less than 5000 if n = 4(d) is greater than 4000 if n = 47. If ${}^{100}C_6 + 4$. ${}^{100}C_7 + 6$. ${}^{100}C_8 + 4$. ${}^{100}C_9 + {}^{100}C_{10}$ has the value equal to ${}^{x}C_{y}$; then the possible value(s) of x + y can be : (b) 114 (c) 196 (a) 112 (d) 198 8. If the co-efficient of x^{2r} is greater than half of the co-efficient of x^{2r+1} in the expansion of

 $(1 + x)^{15}$; then the possible value of 'r' equal to : (a) 5 (b) 6 (c) 7 (d) 9. Let $f(x) = 1 + x^{111} + x^{222} + x^{333} + x^{999}$ then f(x) is divisible by (d) 8

(b) x (a) x+1(d) $1 + x^{222} + x^{444} + x^{666} + x^{888}$ (c) x - 1

238							Advanced	Proble	ems in Mat	hemati	cs for JEE
Z	1				Ansv	vers					
1. 7.	(a, b, c, d)	2.	(a, b, c, d)	3.	(a, b, d)	4.	(a, c, d)	5.	(b, c, d)	6.	(c, d)

/	Column-I	1	Column-II
(A)	If ${}^{n-1}C_r = (k^2 - 3)^n C_{r+1}$ and $k \in R^+$, then least value of $5[k]$ is (where [.] represents greatest integer function)	(P)	10
(B)	$\sum_{i=0}^{m} {}^{20}C_i {}^{40}C_{m-i}, \text{ where } {}^{n}C_r = 0 \text{ if } r > n, \text{ is maximum when } \frac{m}{5} \text{ is}$	(Q)	5
(C)	Number of non-negative integral solutions of inequation $x + y + z \le 4$ is	(R)	35 -
(D)	Let $A = \{1, 2, 3, 4, 5\}, f : A \rightarrow A$, The number of onto functions such that $f(x) = x$ for atleast 3 distinct $x \in A$, is not a multiple of	(S)	6
	al de la companya de	(T)	12

2.

	Column-I		Column-II
(A)	Number of real solution of $(x^{2} + 6x + 7)^{2} + 6(x^{2} + 6x + 7) + 7 = x$ is/are	(P)	15
(B)	If $P = \sum_{r=0}^{n} {}^{n}C_{r}; q = \sum_{r=0}^{m} {}^{m}C_{r} (15)^{r} (m, n \in N)$ and if	(Q)	5
	P = q and m , n are least then $m + n =$		
(C)	Remainder when 1 H→ 3 H→ 5 I++ 2011 I- is divided by 56 is	(R)	3
(D)	Inequality $\left 1 - \frac{ x }{1+ x }\right \ge \frac{1}{2}$ holds for x, then	(S)	0
	number of integral values of 'x' is/are		<u> </u>

3. Match the following

/	* Column-l		Column-II
(A)	If the sum of first 84 terms of the series $\frac{4+\sqrt{3}}{1+\sqrt{3}} + \frac{8+\sqrt{15}}{\sqrt{3}+\sqrt{5}} + \frac{12+\sqrt{35}}{\sqrt{5}+\sqrt{7}} + \dots$ is 549k, then k is equal to	(P)	3

100

Th

(B)	If $x, y \in R$, $x^2 + y^2 - 6x + 8y + 24 = 0$, the greatest value of $\frac{16}{5}\cos^2\left(\sqrt{x^2 + y^2}\right) - \frac{24}{5}\sin\left(\sqrt{x^2 + y^2}\right)$ is	(Q)	2
(C)	If $(\sqrt{3}+1)^6 + (\sqrt{3}-1)^6 = 416$, if $xyz = [(\sqrt{3}+1)^6]$, x, y, z $\in N$, (where [·] denotes the greatest integer function), then the number of ordered triplets (x, y, z) is	(R)	5
(D)	If $(1 + x)(1 + x^2)(1 + x^4)(1 + x^{128}) = \sum_{r=0}^{n} x^r$, then $\frac{n}{85}$ is equal to	(S)	9

Answers	
1. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow R$; $D \rightarrow P$, Q , R , S , T	
2. $A \rightarrow S$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow R$	
3. $A \rightarrow Q; B \rightarrow R; C \rightarrow S; D \rightarrow P$	

Exercise-4 : Subjective Type Problems

- **1.** The sum of the series $3 \cdot {}^{2007}C_0 8 \cdot {}^{2007}C_1 + 13 \cdot {}^{2007}C_2 18 \cdot {}^{2007}C_3 + \dots$ up to 2008 terms is *K*, then *K* is :
- **2.** In the polynomial function $f(x) = (x-1)(x^2-2)(x^3-3)....(x^{11}-11)$ the coefficient of x^{60} is :

3. If
$$\sum_{r=0}^{3n} a_r (x-4)^r = \sum_{r=0}^{3n} A_r (x-5)^r$$
 and $a_k = 1 \forall K \ge 2n$ and $\sum_{r=0}^{3n} d_r (x-8)^r = \sum_{r=0}^{3n} B_r (x-9)^r$ and $\sum_{r=0}^{3n} d_r (x-12)^r = \sum_{r=0}^{3n} D_r (x-13)^r$ and $d_K = 1 \forall K \ge 2n$. The find the value of $\frac{A_{2n} + D_{2n}}{B_{2n}}$.

- **4.** If $3^{101} 2^{100}$ is divided by 11, the remainder is
- **5.** Find the hundred's digit in the co-efficient of x^{17} in the expansion of $(1 + x^5 + x^7)^{20}$.
- 6. Let $x = (3\sqrt{6} + 7)^{89}$. If $\{x\}$ denotes the fractional part of 'x' then find the remainder when $x\{x\} + (x\{x\})^2 + (x\{x\})^3$ is divided by 31.

7. Let
$$n \in N$$
; $S_n = \sum_{r=0}^{3n} ({}^{3n}C_r)$ and $T_n = \sum_{r=0}^n ({}^{3n}C_{3r})$. Find $|S_n - 3T_n|$.

- 8. Find the sum of possible real values of x for which the sixth term of $\left(3^{\log_3 \sqrt{9^{|x-2|}}} + 7^{\frac{1}{5}\log_7(3^{|x-2|-9})}\right)^7$ equal 567 :
- **9.** Let q be a positive integer with $q \le 50$. If the sum ${}^{98}C_{30} + 2 {}^{97}C_{30} + 3 {}^{96}C_{30} + \dots + 68 {}^{31}C_{30} + 69 {}^{30}C_{30} = {}^{100}C_q$ Find the sum of the digits of q.
- **10.** The remainder when $\left(\sum_{k=1}^{5} {}^{20}C_{2k-1}\right)^6$ is divided by 11, is :
- **11.** Let $a = 3^{\frac{1}{223}} + 1$ and for all $n \ge 3$, let $f(n) = {}^{n}C_{0} \cdot a^{n-1} - {}^{n}C_{1} \cdot a^{n-2} + {}^{n}C_{2} \cdot a^{n-3} - \dots + (-1)^{n-1} \cdot n C_{n-1} \cdot a^{0}$. If the value of $f(2007) + f(2008) = 3^{7} k$ where $k \in N$ then find k
- **12.** In the polynomial $(x-1)(x^2-2)(x^3-3)...(x^{11}-11)$, the coefficient of x^{60} is :
- **13.** Let the sum of all divisiors of the form $2^p \cdot 3^q$ (with p, q positive integers) of the number $19^{88} 1$ be λ . Find the unit digit of λ .

- **14.** Find the sum of possible real values of x for which the sixth term of $\left(3^{\log_3 \sqrt{g^{|x-2|}}} + 7^{\left(\frac{1}{5}\right)\log_7(3^{|x-2|-9})}\right)^7$ equals 567.
- **15.** Let $1 + \sum_{r=1}^{10} (3^r \cdot {}^{10}C_r + r \cdot {}^{10}C_r) = 2^{10} (\alpha \cdot 4^5 + \beta)$ where $\alpha, \beta \in N$ and $f(x) = x^2 2x k^2 + 1$. If
- α, β lies between the roots of f(x) = 0. Then find the smallest positive integral value of k. **16.** Let $S_n = {^nC_0}{^nC_1} + {^nC_1}{^nC_2} + \dots + {^nC_{n-1}}{^nC_n}$ if $\frac{S_{n+1}}{S_n} = \frac{15}{4}$; find the sum of all possible values of

$$n(n \in N)$$

1	1				-	Answ	vers					K	2
1.	0	2.	1	3.	2	4.	2	5.	4	6.	0	7	2
8.	4	9.	5	10.	3	11.	9	12.	(1)	13.	(4)	1	2
15.	5	16.	6								(+)	14.	(4)

Chapter 15 - Probability

Exercise-1 : Single Choice Problems 1. The boy comes from a family of two children; What is the probability that the other child is his sister ?: (d) $\frac{1}{4}$ (c) $\frac{2}{3}$ $\frac{1}{2}$ (b) $\frac{1}{3}$ (a) **2.** If A be any event in sample space then the maximum value of $3\sqrt{P(A)} + 4\sqrt{P(\overline{A})}$ is : (b) 2 (a) 4 (d) Can not be determined (c) 5 **3.** Let *A* and *B* be two events, such that $P(\overline{A \cup B}) = \frac{1}{6}$, $P(A \cap B) = \frac{1}{4}$ and $P(\overline{A}) = \frac{1}{4}$, where \overline{A} stands for complement of event A. Then events A and B are : (b) equally likely but not independent (a) equally likely and mutually exclusive (d) mutually exclusive and independent (c) independent but not equally likely 4. Let n ordinary fair dice are rolled once. The probability that at least one of the dice shows an odd number is $\left(\frac{31}{32}\right)$ than 'n' is equal to : (c) 5 (d) 6 (b) 4 (a) 3 5. Three a's, three b's and three c's are placed randomly in a 3×3 matrix. The probability that no row or column contain two identical letters can be expressed as $\frac{p}{q}$, where p and q are coprime then (p+q) equals to : (d) 131 (c) 141 (b) 161 (a) 151 **6.** A set contains 3n members. Let P_n be the probability that S is partitioned into 3 disjoint subsets with *n* members in each subset such that the three largest members of *S* are in different subsets. Then $\lim P_n =$ n→∞ (d) 2/9 (c) 1/9 (b) 1/7 (a) 2/7

- 7. Three different numbers are selected at random from the set $A = \{1, 2, 3, \dots, 10\}$. Then the probability that the product of two numbers equal to the third number is $\frac{p}{a}$, where p and q are relatively prime positive integers then the value of (p + q) is : (d) 42 (c) 41 (a) 39 (b) 40 8. Mr. A's T.V. has only 4 channels ; all of them quite boring so he naturally desires to switch (change) channel after every one minute. The probability that he is back to his original channel for the first time after 4 minutes can be expressed as $\frac{m}{n}$; where m and n are relatively prime numbers. Then (m + n) equals : (d) 33 (a) 27 (c) 23 (b) 31 9. Letters of the word TITANIC are arranged to form all the possible words. What is the probability that a word formed starts either with a T or a vowel ? (d) $\frac{5}{7}$ (a) $\frac{2}{7}$ (c) $\frac{3}{7}$ (b) $\frac{4}{7}$ **10.** A mapping is selected at random from all mappings $f : A \rightarrow A$ where set $A = \{1, 2, 3, ..., n\}$ If the probability that mapping is injective is $\frac{3}{32}$, then the value of *n* is : (a) 3 (b) 4 (c) 8 (d) 16 11. A 4 digit number is randomly picked from all the 4 digit numbers, then the probability that the product of its digit is divisible by 3 is : 107 (b) $\frac{109}{125}$ (a) 125 111 (c) (d) None of these 125 12. To obtain a gold coin; 6 men, all of different weight, are trying to build a human pyramid as shown in the figure. Human pyramid is called "stable" if some one not in the bottom row is "supported by" each of the two closest people beneath him and no body can be supported by anybody of lower weight. Formation of 'stable'
 - probability that they will get gold coin ? (a) $\frac{1}{45}$ (b) $\frac{2}{45}$ (c) $\frac{4}{45}$ (d) $\frac{1}{5}$

pyramid is the only condition to get a gold coin. What is the

- **13.** From a pack of 52 playing cards; half of the cards are randomly removed without looking at them. From the remaining cards, 3 cards are drawn randomly. The probability that all are king.

Probability

	1		
(a)		ക	1
	(25)(17)(13)	(0)	(25)(15)(13)
(a)	1		1
(0)	(52)(17)(12)	(b)	1
	(32)(17)(13)		(13)(51)(17)

14. A bag contains 10 white and 3 black balls. Balls are drawn one by one without replacement till all the black balls are drawn. The probability that the procedure of drawing balls will come to an end at the seventh draw is :

(a) $\frac{15}{286}$	(b) $\frac{103}{286}$	(c) $\frac{35}{286}$	(d) $\frac{7}{286}$
----------------------	-----------------------	----------------------	---------------------

15. Let *S* be the set of all function from the set {1, 2, ..., 10} to itself. One function is selected from *S*, the probability that the selected function is one-one onto is :

(a)
$$\frac{9!}{10^9}$$
 (b) $\frac{1}{10}$ (c) $\frac{100}{10!}$ (d) $\frac{9!}{10^{10}}$

16. Two friends visit a restaurant randomly during 5 pm to 6 pm. Among the two, whoever comes first waits for 15 min and then leaves. The probability that they meet is :

(a)
$$\frac{1}{4}$$
 (b) $\frac{1}{16}$ (c) $\frac{7}{16}$ (d) $\frac{9}{16}$

17. Three numbers are randomly selected from the set {10, 11, 12,, 100}. Probability that they form a Geometric progression with integral common ratio greater than 1 is :

(a)
$$\frac{15}{{}^{91}C_3}$$
 (b) $\frac{16}{{}^{91}C_3}$ (c) $\frac{17}{{}^{91}C_3}$ (d) $\frac{18}{{}^{91}C_3}$

Lander								Answers											
1.	(a)	2.	(c)	3.	(c)	4.	(c)	5.	(c)	6.	(d)	7.	(c)	8.	(b)	9.	(d)	10.	(b)
11.	(a)	12.	(a)	13.	(a)	14.	(a)	15.	(a)	16.	(c)	17.	(d)						

Exercise-2 : One or More than One Answer is/are Correct

- 1. A consignment of 15 record players contain 4 defectives. The record players are selected at random, one by one and examined. The one examined is not put back. Then :
 - (a) Probability of getting exactly 3 defectives in the examination of 8 record players is $\frac{{}^{4}C_{3}{}^{11}C_{5}}{{}^{15}C_{8}}.$
 - (b) Probability that 9th one examined is the last defective is $\frac{8}{107}$.
 - (c) Probability that 9th examined record player is defective, given that there are 3 defectives in first 8 players examined is $\frac{1}{2}$.

(d) Probability that 9th one examined is the last defective is $\frac{8}{105}$

If $A_1, A_2, A_3, \dots, A_{1006}$ be independent events such that $P(A_i) = \frac{1}{2i}$ (*i* = 1, 2, 3,, 1006) and probability that none of the events occurs be $\frac{\alpha!}{2^{\alpha}(\beta!)^2}$, **2.** If then :

- (a) β is of form $4k + 2, k \in I$ (b) $\alpha = 2\beta$
- (c) β is a composite number (d) α is of form 4k, $k \in I$
- 3. A bag contains four tickets marked with 112, 121, 211, 222 one ticket is drawn at random from the bag. let E_i (*i* = 1,2,3) denote the event that *i*th digit on the ticket is 2. Then :
 - (a) E_1 and E_2 are independent
- (b) E_2 and E_3 are independent
- (c) E_3 and E_1 are independent
- (d) E_1, E_2, E_3 are independent

4. For two events A and B let, $P(A) = \frac{3}{5}$, $P(B) = \frac{2}{3}$, then which of the following is/are correct?

(a) $P(A \cap \overline{B}) \leq \frac{1}{2}$ (b) $P(A \cup B) \ge \frac{2}{2}$ (c) $\frac{4}{15} \le P(A \cap B) \le \frac{3}{5}$ (d) $\frac{1}{10} \le P(\overline{A}/B) \le \frac{3}{5}$

L			Answ	ers	
1.	(a, c, d)	2. (a, b, c, d)	3. (a, b, c)	4. (a, b, c, d)	

Exercise-3 : Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

There are four boxes B_1 , B_2 , B_3 and B_4 . Box B_i has *i* cards and on each card a number is printed, the numbers are from 1 to *i*. A box is selected randomly, the probability of selecting box B_i is $\frac{i}{10}$ and then a card is drawn.

Let E_i represent the event that a card with number 'i' is drawn. Then :

1. $P(E_1)$ is equal t	0:		
(a) $\frac{1}{5}$	(b) $\frac{1}{10}$	(c) $\frac{2}{5}$	(d)
2. $P(B_3 E_2)$ is equ	ual to :		
(a) $\frac{1}{2}$	(b) $\frac{1}{4}$	(c) $\frac{1}{2}$	(d)

Paragraph for Question Nos. 3 to 5

Mr. A randomly picks 3 distinct numbers from the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ and arranges them in descending order to form a three digit number. Mr. *B* randomly picks 3 distinct numbers from the set $\{1, 2, 3, 4, 5, 6, 7, 8\}$ and also arranges them in descending order to form a 3 digit number.

hese

Paragraph for Question Nos. 6 to 7

In an experiment a coin is tossed 10 times.

6. Probability that no two heads are consecutive is :

(a)
$$\frac{143}{2^{10}}$$
 (b) $\frac{9}{2^6}$ (c) $\frac{2^{\prime}-1}{2^{10}}$ (d) $\frac{2^{\circ}-1}{2^6}$

247

11.1

 $\frac{1}{4}$

 $\frac{2}{3}$

7. The probability of the event that "exactly four heads occur and occur alternately" is :

(a)
$$1 - \frac{4}{2^{10}}$$
 (b) $1 - \frac{7}{2^{10}}$ (c) $\frac{4}{2^{10}}$ (d) $\frac{5}{2^{10}}$

Paragraph for Question Nos. 8 to 10

The rule of an "obstacle course" specifies that at the n^{th} obstacle a person has to toss a fair 6 sided die n times. If the sum of points in these n tosses is bigger than 2^n , the person is said to have crossed the obstacle.

8.	The	maximum obstacl	es a p	person can cross :				
	(a)	4	(b)	5	(c)	6	(d)	7
9.	The	probability that a	perso	on crosses the first	three	e obstacles :		
	(a)	$\frac{143}{216}$	(b)	$\frac{100}{243}$	(c)	$\frac{216}{243}$	(d)	$\frac{100}{216}$
~	-							

10. The probability that a person crosses the first two obstacles but fails to cross the third obstacle.

(a)	243	(b) $\frac{116}{216}$	(c) $\frac{35}{243}$	(d) $\frac{143}{243}$

Paragraph for Question Nos. 11 to 12

In an objective paper, there are two sections of 10 questions each. For 'section 1', each question has 5 options and only one option is correct and 'section 2' has 4 options with multiple answers and marks for a question in this section is awarded only if he ticks all correct answers. Marks for each question in 'section 1' is 1 and in 'section 2' is 3. (There is no negative marking).

11. If a candidate attempts only two questions by gussing, one from 'section 1' and one from 'section 2', the probability that he scores in both questions is :

(d) $\frac{1}{75}$

12. If a candidate in total attempts 4 questions all by gussing, then the probability of scoring 10 marks is :

	(a)	$\frac{1}{15}\left(\frac{1}{1}\right)$	$\left(\frac{1}{5}\right)^2$		(1	$\frac{4}{5}$	$\left(\frac{1}{15}\right)$	3		(c)	$\frac{1}{5}\left(\frac{1}{1}\right)$	$\left(\frac{4}{5}\right)^3$		((d) 1	None	of tl	nese	
1	1	-		1				A	nsv	ver	S					1000			1
1.	(c)	2.	(c)	3.	(b)	4.	(c)	5.	(a)	6.	(b)	7. (c)	8.	(a)	9.	(J)	10.	(c)
11.	(d)	12.	(d)											1000					

Exercise-4 : Matching Type Problems

1. A is a set containing n elements, A subset P (may be void also) is selected at random from set A and the set A is then reconstructed by replacing the elements of P. A subset Q (may be void also) of A is again chosen at random. The probability that

1:5-

	Column-I	/	Column-II
(A)	Number of elements in P is equal to the number of elements in Q is	(P)	$\frac{\frac{2^n C_n}{4^n}}{4^n}$
(B)	The number of elements in P is more than that in Q is	(Q)	$\frac{(2^{2n}-{}^{2n}C_n)}{2^{2n+1}}$
(C)	$P \cap Q = \phi$ is	(R)	$\frac{\frac{2n}{C_{n+1}}}{4^n}$
(D)	Q is a subset of P is	(S)	$\left(\frac{3}{4}\right)^n$
		(T)	$\frac{{}^{2n}C_n}{4^{n-1}}$

2	Answers	
1. $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow S$; $D \rightarrow S$		

Exercise-5 : Subjective Type Problems

- 1. Mr. A writes an article. The article originally is error free. Each day Mr. B introduces one new error into the article. At the end of the day, Mr. A checks the article and has $\frac{2}{3}$ chance of catching each individual error still in the article. After 3 days, the probability that the article is error free can be expressed as $\frac{p}{q}$ where p and q are relatively prime positive integers. Let $\lambda = q p$, then find the sum of the digits of λ .
- 2. India and Australia play a series of 7 one-day matches. Each team has equal probability of winning a match. No match ends in a draw. If the probability that India wins atleast three consecutive matches can be expressed as $\frac{p}{q}$ where p and q are relatively prime positive integers.

Find the unit digit of *p*.

3. Two hunters A and B set out to hunt ducks. Each of them hits as often as he misses when shooting at ducks. Hunter A shoots at 50 ducks and hunter B shoots at 51 ducks. The probability that B bags more ducks than A can be expressed as $\frac{p}{q}$ in its lowest form. Find the value of

(p+q).

- **4.** If a, b, $c \in N$, the probability that $a^2 + b^2 + c^2$ is divisible by 7 is $\frac{m}{n}$ where m, n are relatively prime natural numbers, then m + n is equal to :
- **5.** A fair coin is tossed 10 times. If the probability that heads never occur on consecutive tosses be $\frac{m}{n}$ (where *m*, *n* are coprime and *m*, $n \in N$), then the value of (n 7m) equals to :
- 6. A bag contains 2 red, 3 green and 4 black balls. 3 balls are drawn randomly and exactly 2 of them are found to be red. If *p* denotes the chance that one of the three balls drawn is green; find the value of 7*p*.
- 7. There are 3 different pairs (i.e., 6 units say a, a, b, b, c, c) of shoes in a lot. Now three person come and pick the shoes randomly (each gets 2 units). Let p be the probability that no one is able to wear shoes (i.e., no one gets a correct pair), then the value of <u>13p</u> <u>4-n</u>, is:
- 8. A fair coin is tossed 12 times. If the probability that two heads do not occur consecutively is p, then the value of $\frac{\sqrt{4096p} 1}{2}$ is, where [] denotes greatest integer function :
- **9.** X and Y are two weak students in mathematics and their chances of solving a problem correctly are 1/8 and 1/12 respectively. They are given a question and they obtain the same answer. If the probability of common mistake is $\frac{1}{1001}$, then probability that the answer was correct is a / b (a and b are coprimes). Then |a b| =

- **10.** Seven digit numbers are formed using digits 1, 2, 3, 4, 5, 6, 7, 8, 9 without repetition. The probability of selecting a number such that product of any 5 consecutive digits is divisible by either 5 or 7 is *P*. Then 12*P* is equal to
- **11.** Assume that for every person the probability that he has exactly one child, excactly 2 children and exactly 3 children are $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{1}{4}$ respectively. The probability that a person will have 4 grand children can be expressed as $\frac{p}{q}$ where p and q are relatively prime positive integers. Find

the value of 5p - q.

12. Mr. B has two fair 6-sided dice, one whose faces are numbered 1 to 6 and the second whose faces are numbered 3 to 8. Twice, he randomly picks one of dice (each dice equally likely) and rolls it. Given the sum of the resulting two rolls is 9. The probability he rolled same dice twice is

 $\frac{m}{n}$ where *m* and *n* are relatively prime positive integers. Find (m + n).

2		-				Ansv	vers	5			and a second		1
1.	7	2.	7	3.	3	4.	8	5.	1	6.	3	7.	2
8.	9	9.	1	10.	7	11.	7	12.	7				

Chapter 16 - Logarithms

Exercise-1 : S	ingle Choice Proble	ms	NAME AND ADDRESS OF
 Solution set of th (a) (0, 4) The number of 	te in equality log ₁₀ 2 x (b) (-∞, 1)	$(x - 3(\log_{10} x)(\log_{10} (x - 2)))$ (c) (4, \infty)	+ $2\log_{10^2}(x-2) < 0$, is : (d) (2, 4)
2. The number of re	eal solution/s of the e	equation $9^{\log_3(\log_e x)} = \log_e$	$x - (\log_e x)^2 + 1$ is :
(a) 0	(b) 1	(c) 2	(d) 3
3. If <i>a</i> , <i>b</i> , <i>c</i> are posit	ive numbers such tha	$t a^{\log_3 7} = 27, b^{\log_7 11} = 49,$	$c^{\log_{11}25} = \sqrt{11}$, then the sum
of digits of $S = a^{1}$	$(\log_3 7)^2 + b^{(\log_7 11)^2} + b^{(\log_7 11)^2}$	$c^{(\log_{11} 25)^2}$ is :	
(a) 15	(b) 17	(c) 19	(d) 21
4. Least positive int	egral value of 'a' for v	which $\log_{\left(x+\frac{1}{x}\right)}(a^2-3a+3)$) > 0; (x > 0):
(a) 1	(b) 2	(c) 3	(d) 4
5. Let $P = \frac{1}{\frac{1}{\log_2 x} + \frac{1}{\log_2 x}}$	$\frac{5}{\frac{1}{\log_3 x} + \frac{1}{\log_4 x} + \frac{1}{\log_4 x}}$	$\frac{1}{\frac{1}{g_5 x}}$ and $(120)^p = 32$, then	the value of x be :
(a) 1	(b) 2	(c) 3	(d) 4
6. If <i>x</i> , <i>y</i> , <i>z</i> be posit	ive real numbers suc	h that $\log_{2x}(z) = 3$, $\log_{5y}(z) = 3$	$(z) = 6$ and $\log_{xy}(z) = \frac{2}{3}$ then
the value of z is :	1		
(a) $\frac{1}{5}$	(b) $\frac{1}{10}$	(c) $\frac{3}{5}$	(d) $\frac{4}{9}$
7. Sum of values of	x and y satisfying log	$g_x(\log_3(\log_x y)) = 0$ and 1	$\log_{v} 27 = 1$ is :
(a) 27	(b) 30	(c) 33	(d) 36
8. $\log_{0.01} 1000 + \log_{0.01} 1000 + \log_{0.01} $	g _{0.1} 0.0001 is equal t	o :	.,
(a) –2	(b) 3	(c) -5/2	(d) 5/2

9. If $\log_{12} 27 = a$, then $\log_6 16 =$ (a) $2\left(\frac{3-a}{3+a}\right)$ (b) $3\left(\frac{3-a}{3+a}\right)$ (c) $4\left(\frac{3-a}{3+a}\right)$ (d) None of these **10.** If $\log_2(\log_2(\log_3 x)) = \log_2(\log_3(\log_2 y)) = 0$ then the value of (x + y) is : (a) 17 (d) 19 (b) 9 (c) 21 11. Suppose that a and b are positive real numbers such that $\log_{27} a + \log_9 b = \frac{7}{2}$ and $\log_{27} b + \log_9 a = \frac{2}{3}$. Then the value of $a \cdot b$ is : (a) 81 (c) 27 (d) 729 (b) 243 **12.** If $2^a = 5$, $5^b = 8$, $8^c = 11$ and $11^d = 14$, then the value of 2^{abcd} is : (a) 1 (c) 7 (b) 2 (d) 14 13. Which of the following conditions necessarily imply that the real number x is rational? (I) x^2 is rational (II) x^3 and x^5 are rational (III) x^2 and x^3 are rational (a) I and II only (b) I and III only (c) II and III only (d) III only **14.** The value of $\frac{\log_8 17}{\log_9 23} - \frac{\log_{2\sqrt{2}} 17}{\log_3 23}$ is equal to : (c) $\frac{\log_2 17}{\log_2 23}$ (d) $\frac{4(\log_2 17)}{3(\log_3 23)}$ (a) -1 (b) 0 **15.** The true solution set of inequality $\log_{(2x-3)}(3x-4) > 0$ is equal to : (a) $\left(\frac{4}{3}, \frac{5}{3}\right) \cup (2, \infty)$ (b) $\left(\frac{3}{2}, \frac{5}{3}\right) \cup (2, \infty)$ (c) $\left(\frac{4}{3}, \frac{3}{2}\right) \cup (2, \infty)$ (d) $\left(\frac{2}{3}, \frac{4}{3}\right) \cup (2, \infty)$ 16. If P is the number of natural numbers whose logarithm to the base 10 have the characteristic p and Q is the number of natural numbers logarithm of whose reciprocals to the base 10 have the characteristic -q then $\log_{10} P - \log_{10} Q$ has the value equal to : (b) *p*−*q* (c) p+q-1(d) p - q - 1(a) p - q + 1**17.** If $2^{2010} = a_n 10^n + a_{n-1} 10^{n-1} + \dots + a_2 10^2 + a_1 \cdot 10 + a_0$, where $a_i \in \{0, 1, 2, \dots, 9\}$ for all $i = 0, 1, 2, 3, \dots, n$, then n =(c) 605 (b) 604 (d) 606 (a) .603 18. The number of zeros after decimal before the start of any significant digit in the number $N = (0.15)^{20}$ are : (b) 16 (c) 17 (d) 18 (a) 15 **19.** $\log_2[\log_4(\log_{10} 16^4 + \log_{10} 25^8)]$ simplifies to : (b) an odd prime (a) an irrational (d) unity (c) a composite **20.** The sum of all the solutions to the equation $2 \log x - \log (2x - 75) = 2$: (c) 75 (b) 350 (d) 200 (a) 30

21. $x^{\log_x a \cdot \log_a y \cdot \log_y z}$ is equal to : (d) x^z (a) x (b) y (c) z **22.** Number of solution(s) of the equation $x^{x\sqrt{x}} = (x\sqrt{x})^x$ is/are : (b) 1 (a) 0 (d) 3 (c) 2 **23.** The difference of roots of the equation $(\log_{27} x^3)^2 = \log_{27} x^6$ is : (a) $\frac{2}{3}$ (d) 8 (b) 1 (c) 9 **24.** If $\log_{10} x + \log_{10} y = 2$, x - y = 15 then : (b) (x, y) lies on $y^2 = 4x$ (a) (x, y) lies on the line y = 4x + 3(c) (x, y) lies on x = 4y(d) (x, y) lies on 4x = y**25.** Product of all values of *x* satisfying the equation $\sqrt{2^x \sqrt[3]{4^x (0.125)^{1/x}}} = 4(\sqrt[3]{2})$ is : (a) $\frac{14}{5}$ (c) $-\frac{1}{5}$ (d) $-\frac{3}{5}$ (b) 3 26. Sum of all values of x satisfying the equation $25^{(2x-x^2+1)} + 9^{(2x-x^2+1)} = 34(15^{(2x-x^2)})$ is : (c) 3 (a) 1 (b) 2 (d) 4 **27.** If $a^{x} = b^{y} = c^{z} = d^{w}$, then $\log_{a}(bcd) =$ (a) $z\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{w}\right)$ (b) $y\left(\frac{1}{x} + \frac{1}{z} + \frac{1}{w}\right)$ (c) $x\left(\frac{1}{y} + \frac{1}{z} + \frac{1}{w}\right)$ (d) $\frac{xyz}{xyz}$ **28.** If $x = \frac{4}{(\sqrt{5}+1)(\sqrt[4]{5}+1)(\sqrt[8]{5}+1)(\sqrt[16]{5}+1)}$. Then the value of $(1+x)^{48}$ is : (a) 5 (b) 25 (c) 125 (d) 625 **29.** If $\log_x \log_{18}(\sqrt{2} + \sqrt{8}) = \frac{1}{3}$, then the value of $32x = \frac{1}{3}$ (a) 2 (c) 6 (d) 8 **30.** Let $n \in N$, $f(n) = \begin{cases} \log_8 n & \text{if } \log_8 n \text{ is integer} \\ 0 & \text{otherwise} \end{cases}$, then the value of $\sum_{n=1}^{2011} f(n)$ is : (a) 2011 (b) 2011×1006 (c) 6 (d) 2^{2011} **31.** If the equation $\frac{\log_{12}(\log_8(\log_4 x))}{\log_5(\log_4(\log_y(\log_2 x)))} = 0$ has a solution for 'x' when $c < y < b, y \neq a$, where 'b' is as large as possible and 'c' is as small as possible, then the value of (a + b + c) is equals to : (b) 19 (a) 18 (c) 20 (d) 21

32	. If lo	$\log_{0.3}(x-1) < \log_0$.09 (x	-1), then x lies in	the	interval :		
	(a)	(2, ∞)	(b)	(1, 2)	(c)	(-2, -1)	(d	$\left(1,\frac{3}{2}\right)$
33	. The	e absolute integral	value	of the solution of	the	equation $\sqrt{7^{2x^2-5x}}$	-6 =	$(\sqrt{2})^{3\log_2 49}$
	(a)	2	(b)	1	(c)	4	(d)	5
34	. Let	$1 \le x \le 256$ and M	be th	e maximum value	of()	$(100 \text{ m}^3)^4 + 16(100 \text{ m}^3)^4$	$(x)^{2}$	$\log_2\left(\frac{16}{16}\right)$. The sum of
	th a		De th	e maximum varue	01 (10	562 k) + 10(108 2 ·		(x)
	the	digits of M is :	a >			£	(1)	16
	(a)	9	(D)	11	(c)	13	(a)	15
35	. Let	$1 \le x \le 256$ and M	be th	e maximum value	of (lo	$(\log_2 x)^4 + 16(\log_2 x)^4$	x) ² l	$\log_2\left(\frac{16}{x}\right)$. The sum of
	the	digits of M is :						
	(a)	9	(b)	11	(c)	13	(d)	15
36	. Nui	mber of real solution	on(s)	of the equation 9	og ₃ ($\log nx) = \ln x - (\ln x)$	(x^2x)	+1 is:
	(a)	0	(b)	1	(c)	2	(d)	3
37	. The	e number of real va	lues	of the parameter λ	for v	which $(\log_{16} x)^2 - 1$	og ₁₆	$x + \log_{16} \lambda = 0$ with
	real	l coefficients will h	ave e	exactly one solution	n is :			
	(a)	1	(b)	2	(c)	3	(d)	4
38.	A ra	ational number wh	ich is	50 times its own	logar	ithm to the base 10) is :	1000
20	(a)	1 $-\log(1000)$ and	(D)	10	(c)	100	(d)	1000
39.	(a)	$= 10g_5(1000)$ and	y = 1	x < y	(c)	r - v	(4)	none of these
40.	(a) 7 log	$g\left(\frac{16}{15}\right) + 5\log\left(\frac{25}{24}\right)$	+ 31	$\log\left(\frac{81}{80}\right)$ is equal to	:	x – y	(u)	none of mese
	(a)	0	(b)	1	(c)	log 2	(d)	log 3
41.	log_1	₀ tan 1°+ log ₁₀ tan	2°+	$+\log_{10}$ tan 89	° is ec	qual to :		
	(a)	0	(b)	1	(c)	27	(d)	81
42.	log7	$\log_7 \sqrt{7}\sqrt{(7\sqrt{7})}$ is	s equa	al to :				
	(a)	3 log ₂ 7	(b)	3log ₇ 2	(c)	1–3log ₇ 2	(d)	$1 - 3\log_2 7$
43.	If (4	$)^{\log_9 3} + (9)^{\log_2 4} =$	(10)	^{log} x ⁸³ , then x is eq	ual to	o:		
	(a)	2	(Ъ)	3	(c)	10	(d)	30
44.	x^{\log_1}	$\left(\frac{y}{z}\right) \cdot y \log_{10}\left(\frac{z}{x}\right) \cdot z$	$\log_{10}\left(\frac{y}{y}\right)$	$\frac{c}{c}$ is equal to :				
	(a)	0	(Ь)	1	(c)	-1	(d)	2

45. The solution set of the equation : $\log_x 2 \log_{2x} 2 = \log_{4x} 2$ is : (d) none of these (c) $\{1/4, 2^2\}$ (a) $\{2^{-\sqrt{2}}, 2^{\sqrt{2}}\}$ (b) {1/2,2} **46.** The least value of the expression $2\log_{10} x - \log_x 0.01$ is (x > 1)(d) 8 (a) 2 (c) 6 (b) 4 **47.** If $\sqrt{\log_2 x} - 0.5 = \log_2 \sqrt{x}$, then x equals to : (b) prime number (a) odd integer (d) irrational (c) composite number **48.** If x_1 and x_2 are the roots of the equation $e^2 x^{\ln x} = x^3$ with $x_1 > x_2$, then (d) $x_1^2 = x_2^2$ (c) $2x_1 = x_2^2$ (b) $x_1 = x_2^2$ (a) $x_1 = 2x_2$ **49.** Let *M* denote antilog ₃₂ 0.6 and *N* denote the value of $49^{(1-\log_7 2)} + 5^{-\log_5 4}$. Then M.N is : (d) 200 (c) 50 (a) 100 (b) 400 **50.** If $\log_2(\log_2(\log_3 x)) = \log_3(\log_3(\log_2 y)) = 0$, then x - y is equal to : (d) 9 (a) 0 (b) 1 (c) 8 **51.** $\left| \log_{\frac{1}{2}} 10 + \left| \log_{4} 625 - \left| \log_{\frac{1}{2}} 5 \right| \right| =$ (d) log₂25 (b) log₂ 5 (c) $\log_2 2$ (a) $\log_{1/2} 2$ **52.** If $\log_4 5 = a$ and $\log_5 6 = b$, then $\log_3 2$ is equal to : (a) $\frac{1}{2a+1}$ (b) $\frac{1}{2b+1}$ (d) $\frac{1}{2ab-1}$ (c) 2ab + 1**53.** If $x = \log_a bc$; $y = \log_b ac$ and $z = \log_c ab$ then which of the following is equal to unity? (b) x yz (a) x + y + z(c) $\frac{1}{1+x} + \frac{1}{1+y} + \frac{1}{1+z}$ (d) (1+x)+(1+y)+(1+z)**54.** $x^{\log_x a \cdot \log_a y \cdot \log_y z}$ is equal to : (b) y (c) z (d) a (a) x **55.** Number of value(s) of 'x' satisfying the equation $x^{\log_{\sqrt{x}}(x-3)} = 9$ is/are (b) 1 (c) 2 (d) 6 (a) 0 **56.** $\log_{0.01} 1000 + \log_{01} 0.0001$ is equal to : (c) $-\frac{5}{2}$ (d) $\frac{5}{2}$ (b) 3 (a) -2 **57.** If $7 \log_a \frac{16}{15} + 5 \log_a \frac{25}{24} + 3 \log_a \frac{81}{80} = 8$, then a =(b) $(10)^{1/8}$ (c) $(30)^{1/8}$ (a) $2^{1/8}$ (d) 1

58.	log	$_{8}(128) - \log_{9} \cot\left(\frac{1}{2}\right)$	$\left(\frac{\pi}{3}\right) =$							
	(a)	31 12	(b)	19 12		(c)	$\frac{13}{12}$	(d)	$\frac{11}{12}$	
59.	The	value of $\left(\frac{1}{\sqrt{27}}\right)^{2-}$	$\left(\frac{\log_5 16}{2\log_5 9}\right)$	equals	to :					
	(a)	$\frac{5\sqrt{2}}{27}$	(b) -	$\sqrt{2}$ 27		(c)	$\frac{4\sqrt{2}}{27}$	(d)	$\frac{2\sqrt{2}}{27}$	
60.	The	sum of all the roo	ts of th	ne equatio	$\log_2($	x - 1	$) + \log_2(x+2)$	$-\log_2(3)$	$(3x-1) = \log_2 4$	
	(a)	12	(b) 2	2		(c)	10	(d)	11	
61	(log	$(\log_2(\log_4))$	2))(lo	$g_1 \log_2^2(2$	$(256)^2$					
01.		log ₄ 8-	+ log a	4	=	=				
	(a)	$-\frac{6}{13}$	(b) -	$-\frac{1}{2}$		(c)	$-\frac{8}{13}$	(d)	$-\frac{12}{13}$	
62.	Let	$\lambda = \log_{5} \log_{5}(3).$	f 3^{k+5}	$^{\lambda} = 405, t$	then the	valu	e of k is :			
	(2)	3	(h)	5		(c)	4	(d)	6	
62		irolo has a radius l	(b) .	(2) and a	circumf	orono	$r = of \log_{10}(h^4)$	Then t	he value of log	h is
03.	AU		0810 (4) and u	circumi	cicii		. men e		
	equ	1		1		8				
	(a)	$\frac{1}{4\pi}$	(b) -	π		(c)	2π	(d)	π	
64.	If 2'	$x^{x} = 3^{y} = 6^{-z}$, the v	value o	$\int \frac{1}{x} + \frac{1}{y} + $	$\frac{1}{z}$ is equ	ial to):			
	(a)	0	(b) 1	1 .	· · · .	(c)	2	(d)	3	
65	The	value of log (5 1)	(5√2 -	-7) is :						
00.	(2)	0	(b) 1	L		(c)	2	(d)	3	
~~	(a)	where the start of	if le	$\log_{ab} a = 4$	is equa	l to :				
00.	The	Value of $\log_{ab} \left(\sqrt{l} \right)$	5)'	-0 00	•					
	(a)	2	(b) ¹	1 <u>3</u> 6		(c)	<u>15</u> 6	(d)	$\frac{17}{6}$	
67.	Iden	tify the correct op	tion							
	(a)	$\log_2 3 < \log_{1/4} 5$				(b)	$\log_5 7 < \log_8$	3		
	(c)	$\log_{3/2} \sqrt{3} > \log_{3/2}$	√5			(d)	$2^{\frac{1}{4}} > \left(\frac{3}{2}\right)^{1/3}$			
				ng the gr	stem of	60112	tions 5/log	$+ \log$	(x) = 26 - 64	
68.	Sum	of all values of x	satistyl	ing the sy	stem of	(c)	30	(A)	$y_{1} = 20, xy = 041$	IS:
	(a)	42	(b) 3	4			52	(u)	4	

.

69. The product of all values of x satisfying the equations $\log_3 a - \log_x a = \log_{x/3} a$ is : (b) $\frac{3}{2}$ (a) 3 (d) 27 (c) 18 **70.** The value of x + y + z satisfying the system of equations $\log_2 x + \log_4 y + \log_4 z = 2$ is $\log_3 y + \log_9 z + \log_9 x = 2$ $\log_4 z + \log_{16} x + \log_{16} y = 2$ (a) $\frac{175}{12}$ (c) **71.** $\left(\frac{1}{49}\right)^{1+\log_7 2} + 5^{-\log_1 7} =$ (b) $\frac{349}{24}$ (d) $\frac{112}{3}$ (c) $\frac{353}{24}$ (a) $7\frac{1}{196}$ (b) $7\frac{3}{196}$ (c) $7\frac{5}{196}$ (d) $7\frac{1}{98}$ 72. The number of real values of x satisfying the equation $\log_2(3-x) - \log_2\left(\frac{\sin\left(\frac{3\pi}{4}\right)}{(5-x)}\right)$ $=\frac{1}{2} + \log_2(x+7)$ is : (a) 0 (b) 1 (c) 2 (d) 3 **73.** If $\log_k x \log_5 k = \log_x 5$, $k \neq 1$, k > 0, then sum of all values of x is : (b) $\frac{24}{5}$ (c) $\frac{26}{5}$ (a) 5 (d) $\frac{37}{5}$ **74.** The product of all values of x satisfying the equation $|x-1|^{\log_3 x^2 - 2\log_x 9} = (x-1)^7$, is : (b) $\frac{162}{\sqrt{3}}$ (c) $\frac{81}{\sqrt{3}}$ (a) 162 (d) 81 **75.** The number of values of x satisfying the equation $\log_2(9^{x-1} + 7) = 2 + \log_2(3^{x-1} + 1)$ is : (b) 2 (c) 3 (a) 1 (d) 0 **76.** Which is the correct order for a given number α , $\alpha > 1$ (b) $\log_{10} \alpha < \log_3 \alpha < \log_e \alpha < \log_2 \alpha$ (a) $\log_2 \alpha < \log_3 \alpha < \log_e \alpha < \log_{10} \alpha$ (d) $\log_3 \alpha < \log_e \alpha < \log_2 \alpha < \log_{10} \alpha$ (c) $\log_{10} \alpha < \log_e \alpha < \log_2 \alpha < \log_3 \alpha$ 77. Let $1 \le x \le 256$ and M be the maximum value of $(\log_2 x)^4 + 16(\log_2 x)^2 \log_2\left(\frac{16}{x}\right)$. The sum of the digits of M is : (b) 11 (a) 9 (c) 13 (d) 15

78.	If $T_r = \frac{1}{\log_{2^r} 4}$ (where	$r \in N$), then the value	of $\sum_{r=1}^{4} T_r$ is :		
	(a) 3	(b) 4	(c) 5	(d)	10
79.	In which of the follow	ing intervals does $\frac{1}{\log_{1/2}}$	$\frac{1}{2(1/3)} + \frac{1}{\log_{1/5}(1/3)}$ lies		
	(a) (1, 2)	(b) (2,3)	(c) (3, 4)	(d)	(4, 5)
80.	If $\sin \theta = \frac{1}{2} \left(a + \frac{1}{a} \right)$ and	$\sin 3\theta = \frac{k}{2} \left(a^3 + \frac{1}{a^3} \right),$	then $k + 6$ is equal to :		
	(a) 3	(b) 4	(c) 5	(d)	-4

81. Complete set of real values of x for which $\log_{(2x-3)}(x^2 - 5x - 6)$ is defined is :

(a)	$\left(\frac{3}{2},\infty\right)$	(b) (6,∞)	(c) $\left(\frac{3}{2}, 6\right)$	(d) $\left(\frac{3}{2},2\right)\cup(2,\infty)$
-----	-----------------------------------	-----------	-----------------------------------	--

2								Α	nsv	ver	s								1
1.	(c)	2.	(b)	3.	(c)	4.	(c)	5.	(b)	6.	(b)	7.	(b)	8.	(d)	9.	(c)	10.	(a)
11.	(Ъ)	12.	(d)	13.	(c)	14.	(Ъ)	15.	(Ь)	16.	(a)	17.	(c)	18.	(b)	19.	(d)	20.	(d)
21.	(c)	22.	(c)	23.	(d)	24.	(c)	25.	(d)	26.	(d)	27.	(c)	28.	(c)	29.	(b)	30.	(c)
31.	(b)	32.	(a)	33.	(c)	34.	(c)	35.	(c)	36.	(Ъ)	37.	(a)	38.	(c)	39.	(a)	40.	(c)
41.	(a)	42.	(c)	43.	(c)	44.	(Ъ)	45.	(a)	46.	(Ъ)	47.	(b)	48.	(b)	49.	(a)	50.	(b)
51.	(c)	52.	(d)	53.	(c)	54.	(c)	55.	(b)	56.	(d)	57.	(a)	58.	(a)	59.	(d)	60.	(d)
61.	(d)	62.	(c)	63.	(d)	64.	(a)	65.	(d)	66.	(d)	67.	(d)	68.	(b)	69.	(d)	70.	(c)
71.	(a)	72.	(Ъ)	73.	(c)	74.	(a)	75.	(b)	76.	(Ъ)	77.	(c)	78.	(c)	79.	(b)	80.	(c)
81.	(b)																		

1		1. 1	Answ	vers	l'and le	1 al
1.	(a, c)	2. (a, b, c, d)	3. (c, d)	4. (a, b, c, d)		

Exercise-3 : Co	morehension Type	Problems	
	Bergeren l		4.2
Lat. La br	Paragraph	for Question Nos. 1	to 3
Let $\log_3 N =$	$\alpha_1 + \beta_1$		
$\log_5 N =$	$\alpha_2 + \beta_2$		
where a a	$\alpha_3 + \beta_3$		
where a ₁ , a ₂ al	Id α_3 are integers and	$d \beta_1, \beta_2, \beta_3 \in [0, 1).$	
1. Number of integra	al values of N if $\alpha_1 =$	4 and $\alpha_2 = 2$:	
(a) 46	(b) 45	(c) 44	(d) 47
2. Largest integral v	alue of N if $\alpha_1 = 5$, α	$_{2} = 3 \text{ and } \alpha_{3} = 2.$	
(a) 342	(b) 343	(c) 243	(d) 242
Difference of larg	est and smallest integ	gral values of N if $\alpha_1 = 5$, $\alpha_2 = 3$ and $\alpha_3 = 2$.
(a) 97	(b) 100	(c) 98	(d) 99
	Paragraph	for Question Nos. 4	to 5
Ifler 1x3 Lus	$\frac{1}{3}$ log \ln^2 minut	$\frac{2}{1}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{1}$ $\frac{1}{2}$	$ x^2 + x^2 = \log_{10} 221$
$\lim_{x \to 0} \log_{10} x + y$	$ -\log_{10} x - xy + y $	$ +\log_{10} x - y - \log_{10}$	$_{0} x + xy + y = 10g_{10} 221$
where x, y are	integers, then		
4. If $x = 111$, then y	can be :		
(a) ±111	(b) ±2	(c) ±110	(d) ±109
5. If $y = 2$, then values $y = 2$, then	ue of x can be :		
(a) ±111	(b) ±15	(c) ± 2	(d) ±110
	Paragraph	for Question Nos. 6	to 7
Given a right ti $1+2^{\log_2(\log_2 p)}$	riangle ABC right an and hypotenuse is give	gled at C and whose legven to be $1 + \log_2(4p)$.	gs are given $1 + 4\log_{p^2}(2p)$. The area of $\triangle ABC$ and circ
circumscribing	t are by and by respe		
6. $\Delta_1 + \frac{4\Delta_2}{\pi}$ is equal	to :		
(a) 31	(b) 28	(c) $3 + \frac{1}{\sqrt{2}}$	(d) 199
7. The value of $\sin\left(-\frac{1}{2}\right)$	$\frac{\pi(25p^2\Delta_1+2)}{6}\bigg)=$		
1	a) 1	(c) $\frac{\sqrt{3}}{\sqrt{3}}$	(d) 1

(a) $\frac{1}{2}$		(b)	$\sqrt{1}$	ī			(C)	2			(a)	1	
2					A	nsv	ver	s	-				11
1. (c) 2	. (a) 3	. (d)	4.	(c)	5.	(b)	6.	(a)	7.	(c)			

Exercise-4 : Matching Type Problems

/	Column-I	/	Column-ll
(A)	If $a = 3(\sqrt{8 + 2\sqrt{7}} - \sqrt{8 - 2\sqrt{7}})$, $b = \sqrt{(42)(30) + 36}$, then the value of $\log_a b$ is equal to	(P)	-1
(B)	If $a = (\sqrt{4 + 2\sqrt{3}} - \sqrt{4 - 2\sqrt{3}})$, $b = \sqrt{11 + 6\sqrt{2}} - \sqrt{11 - 6\sqrt{2}}$ then the value of $\log_a b$ is equal to	(Q)	1
(C)	If $a = \sqrt{3 + 2\sqrt{2}}$, $b = \sqrt{3 - 2\sqrt{2}}$, then the value of $\log_a b$ is equal to	(R)	2
(D)	If $a = \sqrt{7 + \sqrt{7^2 - 1}}$, $b = \sqrt{7 - \sqrt{7^2 - 1}}$, then the value of $\log_a b$ is equal to	(S)	$\frac{3}{2}$
		(T)	None of these

	Answers	and the factor of the second s
1. $A \rightarrow R; B \rightarrow S; C \rightarrow P; D \rightarrow P$		

Exercise-5 : Subjective Type Problems

- **1.** The number $N = 6^{\log_{10} 40} \cdot 5^{\log_{10} 36}$ is a natural number. Then sum of digits of N is :
- **2.** The minimum value of 'c' such that $\log_b(a^{\log_2 b}) = \log_a(b^{\log_2 b})$ and $\log_a(c (b a)^2) = 3$, where $a, b \in N$ is :
- **3.** How many positive integers b have the property that $\log_b 729$ is a positive integer ?
- **4.** The number of negative integral values of x satisfying the inequality $\log_{\left(x+\frac{5}{2}\right)}\left(\frac{x-5}{2x-3}\right)^2 < 0$ is :
- **5.** $\frac{6}{5}a^{(\log_a x)(\log_{10} a)(\log_a 5)} 3^{\log_{10}\left(\frac{x}{10}\right)} = 9^{\log_{100} x + \log_4 2}$ (where $a > 0, a \neq 1$), then

$$\log_3 x = \alpha + \beta$$
, α is integer, $\beta \in [0, 1)$, then $\alpha =$

6. If
$$\log_5\left(\frac{a+b}{3}\right) = \frac{\log_5 a + \log_5 b}{2}$$
, then $\frac{a^4 + b^4}{a^2b^2} =$

7. Let a, b, c, d are positive integers such that $\log_a b = \frac{3}{2}$ and $\log_c d = \frac{5}{4}$. If (a-c) = 9. Find the value of (b-d).

8. The number of real values of x satisfying the equation

$$\log_{10}\sqrt{1+x} + 3\log_{10}\sqrt{1-x} = 2 + \log_{10}\sqrt{1-x^2}$$
 is :

9. The ordered pair (x, y) satisfying the equation

$$x^{2} = 1 + 6\log_{4} y$$
 and $y^{2} = 2^{x} y + 2^{2x+1}$

are (x_1, y_1) and (x_2, y_2) , then find the value of $\log_2 |x_1x_2y_1y_2|$.

10. If
$$\log_7 \log_7 \sqrt{7\sqrt{7}\sqrt{7}} = 1 - a \log_7 2$$
 and $\log_{15} \log_{15} \sqrt{15\sqrt{15}\sqrt{15}} = 1 - b \log_{15} 2$, then $a + b = 1 - b \log_{15} 2$, then $a + b = 1 - b \log_{15} 2$.

- **11.** The number of ordered pair(s) of (x, y) satisfying the equations $\log_{(1+x)}(1-2y+y^2) + \log_{(1-y)}(1+2x+x^2) = 4$ and $\log_{(1+x)}(1+2y) + \log_{(1-y)}(1+2x) = 2$
- **12.** If $\log_b n = 2$ and $\log_n(2b) = 2$, then nb = 2
- **13.** If $\log_y x + \log_x y = 2$, and $x^2 + y = 12$, then the value of xy is :
- **14.** If x, y satisfy the equation, $y^x = x^y$ and x = 2y, then $x^2 + y^2 =$
- **15.** Find the number of real values of x satisfying the equation.

$$\log_2(4^{x+1}+4) \cdot \log_2(4^x+1) = \log_{1/\sqrt{2}}\sqrt{\frac{1}{8}}$$

16. If $x_1, x_2(x_1 > x_2)$ are the two solutions of the equation

$$3^{\log_2 x} - 12(x^{\log_{16} 9}) = \log_3\left(\frac{1}{3}\right)^{3^5}$$
, then the value of $x_1 - 2x_2$ is :

17. Find the number of real values of x satisfying the equation $9^{2\log_9 x} + 4x + 3 = 0$.

18. If $\log_{16} (\log_{\sqrt[3]{3}} (\log_{\sqrt[3]{5}} (x))) = \frac{1}{2}$; find x.

19. The value
$$\left[\frac{1}{6}\left(\frac{2\log_{10}(1728)}{1+\frac{1}{2}\log_{10}(0.36)+\frac{1}{3}\log_{10}8}\right)^{1/2}\right]^{-1}$$
 is :

						Answ	vers					i le	1
1.	9	2.	8	3.	4	4.	0	5.	4	6	47		
8.	0	9.	7	10.	7	11.	1	12.	2	13	4/	7.	93
15.	1	16.	8	17.	0	18.	5	19.	2		9	14.	20

Co-ordinate Geometry

i a ta a

- 17. Straight Lines
- 18. Circle
- 19. Parabola
- 20. Ellipse
- 21. Hyperbola

Chapter 17 – Straight Lines

Exercise-1 : Single Cl	hoice Problems
------------------------	----------------

- 1. The ratio in which the line segment joining (2, -3) and (5, 6) is divided by the x-axis is :
 - (a) 3:1 (b) 1:2
 - (c) $\sqrt{3}:2$ (d) $\sqrt{2}:3$
- **2.** If *L* is the line whose equation is ax + by = c. Let *M* be the reflection of *L* through the *y*-axis, and let *N* be the reflection of *L* through the *x*-axis. Which of the following must be true about *M* and *N* for all choices of *a*, *b* and *c*?
 - (a) The x-intercepts of M and N are equal
 - (b) The *y*-intercepts of *M* and *N* are equal
 - (c) The slopes of M and N are equal
 - (d) The slopes of M and N are reciprocal
- **3.** The complete set of real values of 'a' such that the point $P(a, \sin a)$ lies inside the triangle formed by the lines x 2y + 2 = 0; x + y = 0 and $x y \pi = 0$, is :

(a)
$$\left(0, \frac{\pi}{6}\right) \cup \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$

(b) $\left(\frac{\pi}{2}, \pi\right) \cup \left(\frac{2\pi}{2}, 2\pi\right)$
(c) $(0, \pi)$
(d) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$

4. Let *m* be a positive integer and let the lines 13x + 11y = 700 and y = mx - 1 intersect in a point whose coordinates are integer. Then *m* equals to :

(a) 4 (b) 5 (c) 6 (d) 7
5. If
$$P = \left(\frac{1}{x_p}, p\right); Q = \left(\frac{1}{x_q}, q\right); R = \left(\frac{1}{x_r}, r\right)$$

where $x_k \neq 0$, denotes the k^{th} terms of a H.P. for $k \in N$, then:
(a) ar. $(\Delta PQR) = \frac{p^2 q^2 r^2}{2} \sqrt{(p-q)^2 + (q-r)^2 + (r-p)^2}$ (b) $\triangle PQR$ is a right angled triangle (c) the points P, Q, R are collinear (d) None of these 6. If the sum of the slopes of the lines given by $x^2 - 2cxy - 7y^2 = 0$ is four times their product, then c has the value : (a) 1 (d) -2 (b) -1 (c) 2 7. A piece of cheese is located at (12, 10) in a coordinate plane. A mouse is at (4, -2) and is running up the line y = -5x + 18. At the point (a, b), the mouse starts getting farther from the cheese rather than closer to it. The value of (a + b) is: (a) 6 (b) 10 (c) 18 (d) 14 8. The vertex of right angle of a right angled triangle lies on the straight line 2x + y - 10 = 0 and the two other vertices, at points (2, -3) and (4, 1) then the area of triangle in sq. units is: (c) $\frac{33}{5}$ (a) $\sqrt{10}$ (b) 3 (d) 11 9. Given the family of lines, a(2x + y + 4) + b(x - 2y - 3) = 0. Among the lines of the family, the number of lines situated at a distance of $\sqrt{10}$ from the point M(2-3) is: (a) 0 (b) 1 (c) 2 (d) ∞ 10. Point (0, β) lies on or inside the triangle formed by the lines y = 0, x + y = 8 and 3x - 4y + 12 = 0. Then β can be : (a) 2 (b) 4 (c) 8 (d) 12 **11.** If the lines x + y + 1 = 0; 4x + 3y + 4 = 0 and $x + \alpha y + \beta = 0$, where $\alpha^2 + \beta^2 = 2$, are concurrent then: (a) $\alpha = 1, \beta = -1$ (b) $\alpha = 1, \beta = \pm 1$ (c) $\alpha = -1, \beta = \pm 1$ (d) $\alpha = \pm 1, \beta = 1$ 12. A straight line through the origin 'O' meets the parallel lines 4x + 2y = 9 and 2x + y = -6 at points P and Q respectively. Then the point 'O' divides the segment PQ in the ratio : (b) 4:3 (a) 1:2 (c) 2:1 (d) 3:4 13. If the points (2a, a), (a, 2a) and (a, a) enclose a triangle of area 72 units, then co-ordinates of the centroid of the triangle may be : (c) (12, 12) (a) (4, 4) (b) (-4, 4) (d) (16, 16) 14. Let g(x) = ax + b, where a < 0 and g is defined from [1, 3] onto [0, 2] then the value of $\cot(\cos^{-1}(|\sin x| + |\cos x|) + \sin^{-1}(-|\cos x| - |\sin x|))$ is equal to : (b) g(2) (a) g(1) (c) g(3)(d) g(1) + g(3)

15.	If the distances of any locus of <i>P</i> is :	point P from the points	A(a+b, a-b) and $B(a$	-b, a + b) are equal, then
	(a) $ax + by = 0$	(b) $ax - by = 0$	(c) $bx + ay = 0$	(d) $x - y = 0$
16.	If the equation $4y^3 - 8$	$3a^2yx^2 - 3ay^2x + 8x^3 =$	= 0 represent three strai	ight lines, two of them are
	perpendicular then su	m of all possible values	of a is equal to :	
	(a) $\frac{3}{2}$	(b) $\frac{-3}{-3}$	(c) $\frac{1}{2}$	(d) -2
500 1912	8	4	4	(-) =
17.	The orthocentre of $7x + y - 8 = 0$ is :	the triangle formed b	y the lines $x - 7y + 6$	6 = 0, 2x - 5y - 6 = 0 and
	(a) (8, 2)	(b) (0, 0)	(c) (1, 1)	(d) (2, 8)
18.	All the chords of the	curve $2x^2 + 3y^2 - 5x =$	0 which subtend a rig	ht angle at the origin are
	concurrent at :			
	(a) (0, 1)	(b) (1, 0)	(c) (-1, 1)	(d) (1, -1)
19.	From a point $P \equiv (3, $ variable line $y - 1 = m$	4) perpendiculars PQ a $x(x-7)$ respectively, the	and <i>PR</i> are drawn to liten maximum area of ΔP	ine $3x + 4y - 7 = 0$ and a PQR is :
	(a) 10	(b) 12	(c) 6	(d) 9
20.	The equation of two a the rhombus intersect	djacent sides of rhombu each other at the point	is are given by $y = x$ and t (1, 2). Then the area of	dy = 7x. The diagonals of of the rhombus is :
	(a) $\frac{10}{10}$	(b) <u>20</u>	(c) $\frac{40}{10}$	(d) $\frac{50}{2}$
	3	3	3	3
21.	The point $P(3, 3)$ is re- the left and vertically coordinates of the poi	flected across the line y y 3 units up. Finally, it int after these transform	= –x. Then it is transla is reflected across the nations ?	ted horizontally 3 units to line $y = x$. What are the
	(a) $(0 - 6)$		(b) (0, 0)	
	(c) $(-6, 6)$		(d) (-6, 0)	
22.	The equations $x = t^3$	+ 9 and $y = \frac{3t^3}{4} + 6$ re	epresents a straight lin	e where t is a parameter.
	Then y-intercept of th	ne line is :		
	(a) $-\frac{3}{4}$	(b) 9	(c) 6	(d) 1
23.	The combined equat $7x^2 - 8xy + y^2 = 0; t$	ion of two adjacent si hen slope of its longer d	ides of a rhombus for liagonal is :	med in first quadrant is
	(a) $-\frac{1}{2}$	(b) –2	(c) 2	(d) $\frac{1}{2}$
24.	The number of integr coordinate axes which	al points inside the trian are equidistant from a	angle made by the line at least two sides is/are	3x + 4y - 12 = 0 with the :
	(an integral point is a	point both of whose co	oordinates are integers.	.)
	(a) 1	(b) 2	(c) 3	(d) 4

25	The $x =$	e area of triangle fo 0 is :	rmed	by the straight line	s wh	ose equations are y	y = 4x	x + 2, 2y = x + 3 and
	(a)	$\frac{25}{7\sqrt{2}}$	(b)	$\frac{\sqrt{2}}{28}$	(c)	$\frac{1}{28}$	(d)	<u>15</u> 7
26	In and	triangle ABC, if A x = 4 respectively	is (1, then	2) and the equation <i>B</i> must be :	ons o	f the medians thro	ugh E	and C are $x + y = 5$
27	(a) The	(1, 4) equation of imag	(b) e of p	(7, -2) air of lines $y = x $	(c) -11 w	(4, 1) vith respect to y-ax	(d) is is :	(-2, 7)
	(a)	$x^2 - y^2 - 2x + 1$	= 0	5 1	(b)	$x^2 - y^2 - 4x + 4 =$	= 0	
28.	(c) If P	$4x^2 - 4x - y^2 + 1$ O and B are three	l = 0	to with	(d)	$x^2 - y^2 + 2x + 1 =$	= 0	
	valu	te of <i>m</i> for which h	PR + F	Q is minimum, is	s (1, :	4), $(4, 5)$ and $(m,$	<i>m)</i> re	espectively, then the
	(a)	4	(b)	3	(c)	$\frac{17}{8}$	(d)	$\frac{7}{2}$
29.	The the	vertices of triangl	e ABC	C are A(-1, -7), B((5, 1)	and $C(1, 4)$. The e	quati	on of the bisector of
	(a)	y + 2x - 11 = 0	C 13 .		(b)	x - 7y + 2 = 0		
30	(c)	y - 2x + 9 = 0	n hu	c ²	(d)	y + 7x - 36 = 0		
50.	(a)		(h)	$6x^{-} - xy + 4cy^{-} =$	0 1s 3	3x + 4y = 0, then c	=	
31.	The of a	equations of L_1 are angle with the heat second	L_2 and L_2	are $y = mx$ and $y =$	nx, 1 nterc	3 espectively. Suppo lockwise from the 1	(d) se L ₁ positi	1 make twice as large
	and	that L_1 has 4 times	s the s	lope of L_2 . If L_1 is n	ot ho	prizontal, then the	value	of the product (mn)
	(a)	$\frac{\sqrt{2}}{2}$		8° r	(b)	$-\frac{\sqrt{2}}{2}$		
	(c)	2	, e 17	-431	(d)	-2		
32.	Give	n A (0, 0) and B (x)	r, y) w	with $x \in (0,1)$ and y	> 0.	Let the slope of the	e line	AB equals m_1 . Point
	Che	s on the line $x = 1$ only ABC can be explored.	such t	that the slope of $B(m - m_0)f(m - $	cequ	als m_2 where $0 < n_2$	n ₂ <	m_1 . If the area of the
	(a)	1	press		х), с (Ъ)	1/2	ssible	value of $f(x)$ is:
	(c)	1/4			(d)	1/8		
33.	If no	on-zero numbers	a, b, c	are in H.P, then	the	straight line $\frac{x}{-}$ +	<u>y</u> +	$\frac{1}{2} = 0$ always passes
	thro	ugh a fixed point,	co-or	dinate of fixed poi	nt is	: a	Ь	c for an all of the second sec
	(a)	(-1, 2)	(b)	(-1, -2)	(c)	(1, -2)	(d)	$\left(1,\frac{1}{2}\right)$

Straight lines

34. If $\frac{x^2}{a} + \frac{y^2}{b} + \frac{2xy}{h} = 0$ represent pair of straight lines and slope of one line is twice the other, then $ab: h^2$ is: (a) 9:8 (d) 2:1 (b) 8:9 (c) 1:2 35. Statement-1: A variable line drawn through a fixed point cuts the coordinate axes at A and B. The locus of mid-point of AB is a circle. because Statement-2: Through 3 non-collinear points in a plane, only one circle can be drawn. (a) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1. (b) Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1. (c) Statement-1 is true, statement-2 is false. (d) Statement-1 is false, statement-2 is true. 36. A line passing through origin and is perpendicular to two parallel lines 2x + y + 6 = 0 and 4x + 2y - 9 = 0, then the ratio in which the origin divides this line segment is : (a) 1:2 (b) 1:1 (c) 5:4 (d) 3:4 37. If a vertex of a triangle is (1, 1) and the mid-points of two sides through this vertex are (-1, 2)and (3, 2), then the centroid of the triangle is : (b) $\left(-\frac{1}{3}, \frac{7}{3}\right)$ (c) $\left(1, \frac{7}{3}\right)$ (d) $\left(\frac{1}{3}, \frac{7}{3}\right)$ (a) $\left(-1, \frac{7}{3}\right)$ **38.** The diagonals of parallelogram PQRS are along the lines x + 3y = 4 and 6x - 2y = 7. Then PQRS must be : (b) square (a) rectangle (d) neither rhombus nor rectangle (c) rhombus **39.** The two points on the line x + y = 4 that lie at a unit perpendicular distance from the line 4x + 3y = 10 are (a_1, b_1) and (a_2, b_2) , then $a_1 + b_1 + a_2 + b_2 =$ (c) 7 (d) 8 (b) 6 (a) 5 **40.** The orthocentre of the triangle formed by the lines x + y = 1, 2x + 3y = 6 and 4x - y + 4 = 0 lies in : (b) second quadrant (a) first quadrant (d) fourth quadrant (c) third quadrant **41.** The equation of the line passing through the intersection of the lines 3x + 4y = -5, 4x + 6y = 6and perpendicular to 7x - 5y + 3 = 0 is : (b) 5x - 7y + 2 = 0(a) 5x + 7y - 2 = 0(d) 5x + 7y + 2 = 0(c) 7x - 5y + 2 = 0

42.	The points (2, 1), (8,	5) and $(x, 7)$ lie on	a straight line. Then th	e value of x is :
	(a) 10	(b) 11	(c) 12	(d) $\frac{35}{2}$
43.	In a parallelogram PQ	RS (taken in order)	P is the point $(-1, -1)$.	5 O is (8, 0) and R is (7, 5). Then
	S is the point :		, i io the point (1, -),	
	(a) (-1, 4)	(b) (-2, 2)	(c) $\left(-2, \frac{7}{2}\right)$	(d) (-2, 4)
44.	The area of triangle v	vhose vertices are ((a, a), (a + 1, a + 1), (a + 1)	2, a) is :
	(a) a^3	(b) 2a	(c) 1	(d) 2
45.	The equation $x^2 + y^2$	$2^2 - 2xy - 1 = 0$ represented by the second seco	esents :	
	(a) two parallel stra	ight lines	(b) two perpend	icular straight lines
	(c) a point		(d) a circle	1
46.	Let $A \equiv (-2, 0)$ and B	\equiv (2, 0), then the	umber of integral value	es of $a, a \in [-10, 10]$ for which
	line segment AB subt	ends an acute angle	e at point $C \equiv (a, a+1)$ i	s :
	(a) 15	(b) 17	(c) 19	(d) 21
47.	The angle between s	ides of a rhombus	whose $\sqrt{2}$ times sides is	s mean of its two diagonal, is
	equal to :			
	(a) 300°	(b) 45°	(c) 60°	(d) 90°
48.	A rod of AB of length	1 3 rests on a wall a	s follows :	
		Ť.		
		A		
			\ ₽	
			x	
	Disconsistor ADouch	O(0,0)	B If the red all laws 1	
	on	$1 \text{ tillat } AF \cdot FD = 1 \cdot 2$	a in the rod slides along t	he wall, then the locus of P lies
	(a) $2x + y + xy = 2$		(b) $4x^2 + xy + y$	$y + y^2 - 4$
	(c) $4r^2 + y^2 = 4$		(d) $r^2 + r^2 - r$	y = 4
	(c) + x + y = 1		(a) x + y - x	-2y=0
49.	If $\frac{x^{-}}{a} + \frac{y^{-}}{b} + \frac{2xy}{b} = 0$, represents pair o	f straight lines and slope	e of one line is twice the other.
	Then $ab: h^2$ is:			
	$(a) 8 \cdot 9$	(b) 1·2	$(c) 2 \cdot 1$	
	(a) 0.7		(0) 2.1	(d) 9:8

50. Locus of point of reflection of point (a, 0) w.r	at. the line $yt = x + at^2$ is given by (t is parameter,
$t \in R$):	
(a) $x - a = 0$ (b) $y - a = 0$	(c) $x + a = 0$ (d) $y + a = 0$
51. A light ray emerging from the point source	placed at $P(1, 3)$ is reflected at a point Q in the
x-axis. If the reflected ray passes through $R(t)$	6, 7), then abscissa of Q is :
(a) $\frac{3}{2}$ (b) 3	(c) $\frac{1}{2}$ (d) 1
52. If the axes are rotated through 60° in the anti	iclockwise sense, find the transformed form of the
equation $x^2 - y^2 = a^2$:	
(a) $X^2 + Y^2 - 3\sqrt{3} XY = 2a^2$	(b) $X^2 + Y^2 = a^2$
(c) $Y^2 - X^2 - 2\sqrt{3} XY = 2a^2$	(d) $X^2 - Y^2 + 2\sqrt{3} XY = 2a^2$
53. The straight line $3x + y - 4 = 0$, $x + 3y - 4 = 0$	= 0 and $x + y = 0$ form a triangle which is :
(a) equilateral	(b) right-angled
(c) acute-angled and isosceles	(d) obtuse-angled and isosceles
54. If m and b are real numbers and $mb > 0$, the set of $b = 0$ and $b = 0$.	hen the line whose equation is $y = mx + b$ cannot
contain the point:	
(a) (0, 2008)	(b) (2008, 0)
(c) (0, -2008)	(d) (20, – 100)
55. The number of possible straight lines, pass	sing through (2, 3) and forming a triangle with
coordinate axes, whose area is 12 sq. units,	is:
(a) one	(b) two
(c) three	(d) four
56. If x_1, x_2, x_3 and y_1, y_2, y_3 are both in G.P. wi	th the same common ratio then the points (x_1, y_1) ,
(x_2, y_2) and (x_3, y_3)	(b) lie on a circle
(a) lie on a straight line	(d) None of these
(c) are vertices of a triangle whose vertice	(a) None of alcose res are (a cost $a \sin t$) (b sint $-b \cos t$) and (1 0):
57. Locus of centrold of the triangle whose vertee	
(a) $(3r-1)^2 + (3r)^2 = a^2 - b^2$	(b) $(3x-1)^2 + (3y)^2 = a^2 + b^2$
(c) $(3x+1)^2 + (3y)^2 = a^2 + b^2$	(d) $(3x+1)^2 + (3y)^2 = a^2 - b^2$
58 The equation of the straight line passing thr	ough (4, 3) and making intercepts on co-ordinate
axes whose sum is -1 is :	
(a) $\frac{x}{2} + \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$	(b) $\frac{x}{2} - \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$
(c) $\frac{x}{2} + \frac{y}{3} = 1$ and $\frac{x}{2} + \frac{y}{1} = 1$	(d) $\frac{x}{2} - \frac{y}{3} = 1$ and $\frac{x}{-2} + \frac{y}{1} = 1$

59. Let $A \equiv (3, 2)$ and $B \equiv (5, 1)$. *ABP* is an equilateral triangle is constructed one the side of *AB* remote from the origin then the orthocentre of triangle *ABP* is:

(a) $\left(4-\frac{1}{2}\sqrt{3},\frac{3}{2}-\sqrt{3}\right)$	(b) $\left(4+\frac{1}{2}\sqrt{3},\frac{3}{2}+\sqrt{3}\right)$
(c) $\left(4-\frac{1}{6}\sqrt{3},\frac{3}{2}-\frac{1}{3}\sqrt{3}\right)$	(d) $\left(4+\frac{1}{6}\sqrt{3},\frac{3}{2}+\frac{1}{3}\sqrt{3}\right)$

- **60.** Area of the triangle formed by the lines through point (6, 0) and at a perpendicular distance of 5 from point (1, 3) and line y = 16 in square units is :
 - (a) 160 (b) 200 (c) 240 (d) 130

61. The straight lines 3x + y - 4 = 0, x + 3y - 4 = 0 and x + y = 0 form a triangle which is :

- (a) equilateral (b) right-angled
- (c) acute-angled and isosceles (d) obtuse-angled and isosceles

62. The orthocentre of the triangle with vertices (5, 0), (0, 0), $\left(\frac{5}{2}, \frac{5\sqrt{3}}{2}\right)$ is :

- (a) (2,3) (b) $\left(\frac{5}{2}, \frac{5}{2\sqrt{3}}\right)$ (c) $\left(\frac{5}{6}, \frac{5}{2\sqrt{3}}\right)$ (d) $\left(\frac{5}{2}, \frac{5}{\sqrt{3}}\right)$
- **63.** All chords of a curve $3x^2 y^2 2x + 4y = 0$ which subtends a right angle at the origin passes through a fixed point, which is :
- (a) (1,2)
 (b) (1,-2)
 (c) (2,1)
 (d) (-2,1)
 64. Let P(-1,0), Q(0,0), R(3, 3√3) be three points then the equation of the bisector of the angle ∠PQR is :

(a) $\frac{\sqrt{3}}{2}x + y = 0$ (b) $x + \sqrt{3}y = 0$ (c) $\sqrt{3}x + y = 0$ (d) $x + \frac{\sqrt{3}}{2}y = 0$

1								A	nsv	ver	s					and the second			1
1.	(b)	2.	(c)	3.	(c)	4.	(c)	5.	(c)	6.	(c)	7.	(b)	8.	(b)	9.	(b)	10.	(a)
11.	(d)	12.	(d)	13.	(d)	14.	(c)	15.	(d)	16.	(Ъ)	17.	(c)	18.	(b)	19.	(d)	20.	(a)
21.	(a)	22.	(a)	23.	(c)	24.	(a)	25.	(c)	26.	(b)	27.	(d)	28.	(a)	29.	(b)	30.	(a)
31.	(c)	32.	(d)	33.	(c)	34.	(a)	35.	(d)	36.	(d)	37.	(c)	38.	(c)	39.	(d)	40.	(a)
41.	(d)	42.	(b)	43.	(d)	44.	(c)	45.	(a)	46.	(c)	47.	(d)	48.	(c)	49.	(d)	50.	(c)
51.	(a)	52.	(c)	53.	(d)	54.	(b)	55.	(c)	56.	(a)	57.	(Ь)	58.	(d)	59.	(d)	60.	(c)
61.	(d)	62.	(b)	63.	(b)	64.	(c)										,		

Exercise-2 : One or More than One Answer is/are Correct 1. A line makes intercepts on co-ordinate axes whose sum is 9 and their product is 20 ; then its equation is/are : (a) 4x + 5y - 20 = 0(b) 5x + 4y - 20 = 0(c) 4x - 5y - 20 = 0(d) 4x + 5y + 20 = 02. The equation(s) of the medians of the triangle formed by the points (4, 8), (3, 2) and (5, -6)is/are : (a) x = 4(b) x = 5y - 3(c) 2x + 3y - 12 = 0(d) 22x + 3y - 92 = 03. The value(s) of t for which the lines 2x + 3y = 5, $t^2x + ty - 6 = 0$ and 3x - 2y - 1 = 0 are concurrent, can be : (a) t = 2(b) t = -3(c) t = -2(d) t = 34. If one of the lines given by the equation $ax^2 + 6xy + by^2 = 0$ bisects the angle between the co-ordinate axes, then value of (a + b) can be : (d) 12 (a) -6 (b) 3 (c) 6 5. Suppose ABCD is a quadrilateral such that the coordinates of A, B and C are (1, 3), (-2, 6) and (5, -8) respectively. For what choices of coordinates of D will make ABCD a trapezium ? (a) (3, -6) (d) (3, -1)(b) (6, -9)(c) (0, 5) **6.** One diagonal of a square is the portion of the line $\sqrt{3}x + y = 2\sqrt{3}$ intercepted by the axes. Then an extremity of the other diagonal is : (b) $(1 + \sqrt{3}, \sqrt{3} + 1)$ (a) $(1 + \sqrt{3}, \sqrt{3} - 1)$ (d) $(1-\sqrt{3},\sqrt{3}+1)$ (c) $(1-\sqrt{3},\sqrt{3}-1)$ 7. Two sides of a rhombus ABCD are parallel to lines y = x + 2 and y = 7x + 3. If the diagonals of the rhombus intersect at point (1, 2) and the vertex A is on the y-axis is, then the possible coordinates of A are: $\left(0,\frac{5}{2}\right)$ (c) (0, 5) (b) (0, 0) (d) (0, 3) (a)

- 8. The equation of the sides of the triangle having (3, -1) as a vertex and x 4y + 10 = 0 and 6x + 10y - 59 = 0 as angle bisector and as median respectively drawn from different vertices. are :
 - (b) 2x + 9y 65 = 0(a) 6x + 7y - 13 = 0
 - (d) 6x 7y 25 = 0(c) 18x + 13y - 41 = 0
- 9. A(1,3) and C(5, 1) are two opposite vertices of a rectangle ABCD. If the slope of BD is 2, then the coordinates of B can be :
 - (b) (5, 4) (a) (4, 4) (d) (1,0)
 - (c) (2,0)

- **10.** All the points lying inside the triangle formed by the points (1, 3), (5, 6), and (-1, 2) satisfy:
 - (a) $3x + 2y \ge 0$ (b) $2x + y + 1 \ge 0$
 - (c) $-2x + 11 \ge 0$ (d) $2x + 3y 12 \ge 0$
- **11.** The slope of a median, drawn from the vertex A of the triangle ABC is -2. The co-ordinates of vertices B and C are respectively (-1, 3) and (3, 5). If the area of the triangle be 5 square units, then possible distance of vertex A from the origin is/are.
 - (a) 6 (b) 4 (c) $2\sqrt{2}$ (d) $3\sqrt{2}$
- **12.** The points A(0, 0), $B(\cos \alpha, \sin \alpha)$ and $C(\cos \beta, \sin \beta)$ are the vertices of a right angled triangle if:
 - (a) $\sin\left(\frac{\alpha-\beta}{2}\right) = \frac{1}{\sqrt{2}}$ (b) $\cos\left(\frac{\alpha-\beta}{2}\right) = -\frac{1}{\sqrt{2}}$ (c) $\cos\left(\frac{\alpha-\beta}{2}\right) = \frac{1}{\sqrt{2}}$ (d) $\sin\left(\frac{\alpha-\beta}{2}\right) = -\frac{1}{\sqrt{2}}$

					Ansv	vers	3	10		And a state of the	
1.	(a, b)	2.	(a, c, d)	3.	(a, b)	4.	(a, c)	5.	(b, d)	6.	(b, c)
7.	(a, b)	8.	(b, c, d)	9.	(a, c)	10.	(a, b, c, d)	11.	(a, c)	12	(a h c

Sin	aight lines			277
¢	Exercise-3 : Co	mprehension Type P	roblems	1.5 100
		Paragraph fo	r Question Nos. 1 to	o 2
д(* "Л	The equations of Given a fixed po	f the sides <i>AB</i> and CA c int P(2, 3).	of a $\triangle ABC$ are $x + 2y =$	0 and $x - y = 3$ respectively.
1	Let the equation of	fBC is $x + py = q$. Then	the value of $(p + q)$ if P b	e the centroid of the $\triangle ABC$ is:
	(a) 14	(b) -14	(c) 22	(d) -22
2	If P be the orthoce	entre of $\triangle ABC$ then equ	ation of side BC is :	
	(a) $y + 5 = 0$	(b) $y - 5 = 0$	(c) $5y + 1 = 0$	(d) $5y - 1 = 0$
		Paragraph fo	r Question Nos. 3 to	o 4
	Consider a triang $x + y = 2$ and $x + y = 2$	gle ABC with vertex A (2 – 3y = 6 respectively. Le	2, – 4). The internal bised at the two bisectors mee	ctors of the angles <i>B</i> and <i>C</i> are t at I.
3	If (a, b) is incentre	of the triangle ABC the	en $(a + b)$ has the value	equal to :
	(a) 1	(b) 2	(c) 3	(d) 4
4	If (x_1, y_1) and (x_2) $(x_1x_2 + y_1y_2)$ is e	, y_2) are the co-ordinatequal to :	es of the point <i>B</i> and <i>C</i> r	respectively, then the value of
	(a) 4	(b) 5	(c) 6	(d) 8

2	1							Ar	swers		and the second second	10 P
1.	(d)	2.	(a)	3.	(b)	4.	(d)					

1

Exercise-4 : Matching Type Problems

/	Column-I		Column-II
(A)	If a, b, c are in A.P., then lines $ax + by + c = 0$ are concurrent at:	(P)	(-4, -7)
(B)	A point on the line $x + y = 4$ which lies at a unit distance from the line $4x + 3y = 10$ is :	(Q)	(-7, 11)
(C)	Orthocentre of triangle made by lines $x + y = 1$, x - y + 3 = 0, $2x + y = 7$ is	(R)	(1, -2)
(D)	Two vertice of a triangle are $(5, -1)$ and $(-2, 3)$. If orthocentre is the origin then coordinates of the third vertex are	(S)	(-1, 2)
		(T)	(0, 0)

2.

	Column-l		Column-ll	
(A)	If $\sum_{r=1}^{n+1} \left(\sum_{k=1}^{n} {}^k C_{r-1} \right) = 30$, then <i>n</i> is equal to	(P)	1	
(B)	The number of integral values of g for which atmost one member of the family of lines given by $(1 + 2\lambda) x + (1 - \lambda) y + 2 + 4\lambda = 0$ (λ is real parameter) is tangent to the circle $x^{2} + y^{2} + 4gx + 18x + 17y + 4g^{2} = 0$ can be	(Q)	4	
(C)	Number of solutions of the equation $\sin 9x + \sin 5x + 2\sin^2 x = 1$ in interval $(0, \pi)$ is	(R)	7	
(D)	If the roots of the equation $x^2 + ax + b = 0$ ($a, b \in R$) are tan 65° and tan 70°, then ($a + b$) equals.	(S)	10	

3.

/	Column-l		Column-II
(A)	Exact value of $\cos 40^{\circ}(1 - 2\sin 10^{\circ}) =$	(P)	1
			4

Straight lines

1	(B)	Value of λ for which lines are concurrent $x + y + 1 = 0$, $3x + 2\lambda y + 4 = 0$, $x + y - 3\lambda = 0$ can be	(Q)	$\frac{1}{2}$
	(C)	Points $(k, 2-2k)$, $(-k+1, 2k)$ and $(-4-k, 6-2k)$ are collinear then sum of all possible real values of 'k' is	(R)	$\frac{3}{2}$
-	(D)	Value of $\sum_{k=3}^{\infty} \sin^k \left(\frac{\pi}{6}\right) =$	(S)	$-\frac{1}{2}$

Answers	
1. $A \rightarrow R; B \rightarrow Q; C \rightarrow S; D \rightarrow P$	
2. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$	
3. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$	

Exercise-5 : Subjective Type Problems

- **1.** If the area of the quadrilateral *ABCD* whose vertices are A(1, 1), B(7, -3), C(12, 2) and D(7, 21) is Δ . Find the sum of the digits of Δ .
- 2. The equation of a line through the mid-point of the sides AB and AD of rhombus ABCD, whose one diagonal is 3x 4y + 5 = 0 and one vertex is A(3, 1) is ax + by + c = 0. Find the absolute value of (a + b + c) where a, b, c are integers expressed in lowest form.
- **3.** If the point (α, α^4) lies on or inside the triangle formed by lines $x^2y + xy^2 2xy = 0$, then the largest value of α is.
- **4.** The minimum value of $[(x_1 x_2)^2 + (12 \sqrt{1 x_1^2} \sqrt{4x_2})^2]^{1/2}$ for all permissible values of x_1 and x_2 is equal to $a\sqrt{b} c$ where $a, b, c \in N$, then find the value of a + b c.
- **5.** The number of lines that can be drawn passing through point (2, 3) so that its perpendicular distance from (-1, 6) is equal to 6 is :
- **6.** The graph of $x^4 = x^2 y^2$ is a union of *n* different lines, then the value of *n* is.
- 7. The orthocentre of triangle formed by lines x + y 1 = 0, 2x + y 1 = 0 and y = 0 is (h, k), then $\frac{1}{k^2} = \frac{1}{k^2}$
- **8.** Find the integral value of *a* for which the point (-2, a) lies in the interior of the triangle formed by the lines y = x, y = -x and 2x + 3y = 6.
- 9. Let A = (-1, 0), B = (3, 0) and PQ be any line passing through (4, 1). The range of the slope of PQ for which there are two points on PQ at which AB subtends a right angle is (λ₁, λ₂), then 5(λ₁ + λ₂) is equal to.
- 10. Given that the three points where the curve $y = bx^2 2$ intersects the x-axis and y-axis form an equilateral triangle. Find the value of 2b.

Exercise-1 : Single Choice Problems

- **1.** The locus of mid-points of the chords of the circle $x^2 2x + y^2 2y + 1 = 0$ which are of unit length is :
 - (b) $(x-1)^2 + (y-1)^2 = 2$ (a) $(x-1)^2 + (y-1)^2 = \frac{3}{4}$ (d) $(x-1)^2 + (y-1)^2 = \frac{2}{3}$ (c) $(x-1)^2 + (y-1)^2 = \frac{1}{4}$
- 2. The length of a common internal tangent to two circles is 5 and a common external tangent is 15, then the product of the radii of the two circles is :
 - (c) 75 (d) 30 (b) 50 (a) 25
- 3. A circle with center (2, 2) touches the coordinate axes and a straight line AB where A and B lie on positive direction of coordinate axes such that the circle lies between origin and the line AB. If *O* be the origin then the locus of circumcenter of $\triangle OAB$ will be:

(a)
$$xy = x + y + \sqrt{x^2 + y^2}$$

(b) $xy = x + y - \sqrt{x^2 + y^2}$
(c) $xy + x + y = \sqrt{x^2 + y^2}$
(d) $xy + x + y + \sqrt{x^2 + y^2} = 0$

4. Length of chord of contact of point (4, 4) with respect to the circle $x^2 + y^2 - 2x - 2y - 7 = 0$ is:

(a)
$$\frac{3}{\sqrt{2}}$$
 (b) $3\sqrt{2}$ (c) 3 (d) 6

- 5. Let P, Q, R, S be the feet of the perpendiculars drawn from a point (1, 1) upon the lines x + 4y = 12; x - 4y + 4 = 0 and their angle bisectors respectively; then equation of the circle which passes through Q, R, S is :
 - (a) $x^2 + y^2 5x + 3y 6 = 0$
- (b) $x^2 + y^2 5x 3y + 6 = 0$

- (c) $x^2 + y^2 5x 3y 6 = 0$

- (d) None of these

6	. Fro	m a point 'P' on the	e line 2x + y + 4 = 0;	which is	nearest to the circ	$ = x^2 + y^2 - 12y + 35 = 0, $
	tan	gents are drawn to	given circle. The ar	ea of qu	adrilateral PACB (where 'C' is the center of
	circ	ele and PA & PB are	the tangents.) is :	cu or qu		
	(a)	8	(b) √110	(c)	$\sqrt{19}$	(d) None of these
7	. The	$\lim 2x - y + 1 = 0$	is tangent to the circ	le at the	point (2, 5) and th	ne centre of the circles lies
	on .	x - 2y = 4. The rad	lius of the circle is:			
	(a)	3√5		(b)	5√3	
	(c)	2√5		(d)	$5\sqrt{2}$	
8	If A	$(\cos \alpha, \sin \alpha), B(\sin \alpha)$	$n\alpha$, $-\cos\alpha$), $C(1, 2)$	are the	vertices of a trian	gle, then as α varies the
	locu	is of centroid of the	e $\triangle ABC$ is a circle where $\triangle ABC$ is a ci	nose rad	ius is :	_
	(a)	$2\sqrt{2}$	(b) $\frac{4}{4}$	(c)	2	(d) $\frac{2}{2}$
		3	\7		3	V9
9.	Tan	gents drawn to circ	$(x-1)^2 + (y-1)^2$	² = 5 at p	point P meets the li	ine $2x + y + 6 = 0$ at Q on
	the	x-axis. Length PQ i	is equal to :			
	(a)	√12	(b) √10	(c)	4	(d) √15
10.	ABC	D is square in whic	h A lies on positive y	-axis and	B lies on the positi	ive x-axis. If D is the point
	(12,	17), then co-ordin	ate of C is :			
	(a)	(17, 12)	(b) (17, 5)	(c)	(17, 16)	(d) (15, 3)
11.	Sta 2	tement-1: The 1	lines $y = mx + 1 - m$	for all	values of m is	a normal to the circle
	x +	-y - 2x - 2y = 0.				
	Sta	tement-2: The lin	ne L passes through t	he centr	e of the circle.	
	(a)	Statement-1 is tr statement-1.	rue, statement-2 is	true an	d statement-2 is	correct explanation for
	(b)	Statement-1 is tru statement-1.	ie, statement-2 is true	e and sta	atement-2 is not th	e correct explanation for
	(c)	Statement-1 is tru	ie, statement-2 is fals	se.		
	(d)	Statement-1 is fals	se, statement-2 is tru	ıe.		
12.	A(1,	0) and <i>B</i> (0, 1) are	two fixed points on	the circl	$ex^{2} + y^{2} = 1.C$ is	a variableinternal in
	circl	e. As C moves, the	locus of the orthoce	ntre of t	he triangle ABC is	
	(a)	$x^{2} + y^{2} - 2x - 2y$	+ 1 = 0	(b)	$x^2 + y^2 - r - y - r$	•
	(c)	$x^2 + y^2 = 4$		(d)	$x^2 + y^2 + 2x - 2y$	+1-0
13.	Equa	tion of a circle pass	sing through (1, 2) a	nd (2, 1)	and for which line	
	is :					x + y = 2 is a diameter;
		2 2				

- (a) $x^2 + y^2 + 2x + 2y 11 = 0$ (b) $x^2 + y^2 2x 2y 1 = 0$
- (c) $x^2 + y^2 2x 2y + 1 = 0$ (d) None of these

Circle

Circle		and the second and the second	a man the span of	an and the line of the	283
14. The are	ea of an equila	iteral triangle in	scribed in a ci	rcle of radius	4 cm, is :
(a) 12	2 cm^2		(b)	$9\sqrt{3}$ cm ²	and weater at
(c) 8 ₁	$\sqrt{3}$ cm ²		(d)	$12\sqrt{3}$ cm ²	
5. Let all	the points on	the curve x^2 +	$y^2 - 10x = 0$	are reflected a	about the line $v = x + 3$. The
locus o	f the reflected	points is in the	form $x^2 + y^2$	+ gx + fy + c =	= 0. The value of $(g + f + c)$ is
equal t	o :	-		84 .))	
(a) 28	3	(b) –28	(c)	38	(d) –38
6. The sh	ortest distance	e from the line 3	3x + 4y = 25 to	the circle x^2	$+y^2 = 6x - 8y$ is equal to:
(a) 7/	5	(b) 9/5	(c)	11/5	(d) 32/5
7. In the the circ	xy -plane, the left cle $(x-6)^2 + (x-6)^2$	length of the she $(y - 8)^2 = 25$ is:	ortest path fro	m (0, 0) to (1	2, 16) that does not go inside
(a) 10	√3		(b)	10√5	
(c) 10	$\sqrt{3} + \frac{5\pi}{3}$		(d)	$10 + 5\pi$	
inside the tria (a) 1/	the triangle (bangle. The rad $\sqrt{3}$	in an equilateral out outside the fi lius of the small	triangle with rst circle), tan er circle is: (b)	side lengths 6 gent to the firs 2/3	o unit. Another circle is drawn at circle and two of the sides o
(c) 1/	2		(d)	1	
9. The eq	uation of the t	angent to the ci	rcle $x^2 + y^2 - y^2$	4x = 0 which	is perpendicular to the norma
drawn	through the c	origin can be :			
(a) <i>x</i>	=1	(b) $x = 2$	(c)	x + y = 2	(d) $x = 4$
0. The eq	uation of the	line parallel to t	the line $3x + 4$	y = 0 and tou	ching the circle $x^2 + y^2 = 9i$
the firs	t quadrant is				_
(a) 3x	x + 4y = 15		(D)	3x + 4y = 45	
(c) 3x	c + 4y = 9		(d)	3x + 4y = 12	2 2 2
1. The $x^2 + y$	centres of t ${}^2 - 9x - 4y +$	the three circ $2 = 0$	cles $x^2 + y^2$	-10x + 9 = 0,	$x^2 + y^2 - 6x + 2y + 1 = 0,$
(a) lie	on the straig	ht line $x - 2y =$	5 (b)	lie on circle	$x^2 + y^2 = 25$
(c) de	not lie on sti	aight line	(d)	lie on circle	$x^{2} + y^{2} + x + y - 17 = 0$
0 The se	not ne on on	diameter of the	circle $r^2 + v$	$^{2} + 2x - 4y = 0$	4 that is parallel to $3x + 5y =$
2. The eq	uation of the	utameter of the		· ij =	to paramet to on + Jy -
1S:	- Ex - 7		ው	3x + 5y = 7	
(a) 3)	+ 3V = -1				
(a) 0.	+5y = 7		(ď)	3x + 5y = 1	

(d) 5

- **23.** There are two circles passing through points A(-1, 2) and B(2, 3) having radius $\sqrt{5}$. Then the length of intercept on x-axis of the circle intersecting x-axis is :
 - (a) 2 (b) 3 (c) 4
- **24.** A square OABC is formed by line pairs xy = 0 and xy + 1 = x + y where 'O'is the origin. A circle with centre C_1 inside the square is drawn to touch the line pair xy = 0 and another circle with centre C_2 and radius twice that of C_1 , is drawn to touch the circle C_1 and the other line pair. The radius of the circle with centre C_1 is:

(a)
$$\frac{\sqrt{2}}{\sqrt{3}(\sqrt{2}+1)}$$
 (b) $\frac{2\sqrt{2}}{3(\sqrt{2}+1)}$
(c) $\frac{\sqrt{2}}{3(\sqrt{2}+1)}$ (d) $\frac{\sqrt{2}+1}{3\sqrt{2}}$

25. The equation of the circle circumscribing the triangle formed by the points (3, 4), (1, 4) and (3, 2) is :

(a) $8x^2 + 8y^2 - 16x - 13y = 0$ (b) $x^2 + y^2 - 4x - 8y + 19 = 0$

(c)
$$x^2 + y^2 - 4x - 6y + 11 = 0$$
 (d) $x^2 + y^2 - 6x - 6y + 17 = 0$

- **26.** The equation of the tangent to circle $x^2 + y^2 + 2gx + 2fy = 0$ at the origin is :
 - (a) fx + gy = 0 (b) gx + fy = 0 (c) x = 0 (d) y = 0
- **27.** The line y = x is tangent at (0, 0) to a circle of radius 1. The centre of the circle is :
 - (a) either $\left(-\frac{1}{2}, \frac{1}{2}\right)$ or $\left(\frac{1}{2}, -\frac{1}{2}\right)$ (b) either $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ or $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ (c) either $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ or $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (d) either (1, 0) or (-1, 0)

28. The circles $x^2 + y^2 + 6x + 6y = 0$ and $x^2 + y^2 - 12x - 12y = 0$:

- (a) cut orthogonally (b) touch each other internally
- (c) intersect in two points (d) touch each other externally
- **29.** In a right triangle *ABC*, right angled at *A*, on the leg *AC* as diameter, a semicircle is described. The chord joining *A* with the point of intersection *D* of the hypotenuse and the semicircle, then the length *AC* equals to:
 - (a) $\frac{AB \cdot AD}{\sqrt{AB^2 + AD^2}}$ (b) $\frac{AB \cdot AD}{AB + AD}$ (c) $\sqrt{AB \cdot AD}$ (d) $\frac{AB \cdot AD}{\sqrt{AB^2 - AD^2}}$

30. Radical centre of the circles drawn on the sides as a diameter of triangle formed by the lines 3x - 4y + 6 = 0, x - y + 2 = 0 and 4x + 3y - 17 = 0 is : (a) (3, 2) (b) (3, -2) (c) (2, -3) (d) (2, 3)

Circle

- **31. Statement-1:** A circle can be inscribed in a quadrilateral whose sides are 3x 4y = 0, 3x - 4y = 5, 3x + 4y = 0 and 3x + 4y = 7. Statement-2: A circle can be inscribed in a parallelogram if and only if it is a rhombus. (a) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1. (b) Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1. (c) Statement-1 is true, statement-2 is false. (d) Statement-1 is false, statement-2 is true. **32.** If x = 3 is the chord of contact of the circle $x^2 + y^2 = 81$, then the equation of the corresponding pair of tangents, is: (a) $x^2 - 8\gamma^2 + 54x + 729 = 0$ (b) $x^2 - 8y^2 - 54x + 729 = 0$ (c) $x^2 - 8\gamma^2 - 54x - 729 = 0$ (d) $x^2 - 8y^2 = 729$ **33.** The shortest distance from the line 3x + 4y = 25 to the circle $x^2 + y^2 = 6x - 8y$ is equal to : (c) $\frac{11}{5}$ (d) $\frac{7}{5}$ (a) $\frac{7}{3}$ (b) $\frac{9}{5}$ **34.** The circle with equation $x^2 + y^2 = 1$ intersects the line y = 7x + 5 at two distinct points A and B. Let C be the point at which the positive x-axis intersects the circle. The angle ACB is : (a) $\tan^{-1}\frac{4}{2}$ (c) $\tan^{-1} 1$ (d) $\cot^{-1}\frac{4}{-1}$ (b) $\cot^{-1}(-1)$ **35.** The abscissae of two points A and B are the roots of the equation $x^2 + 2ax - b^2 = 0$ and their ordinates are the roots of the equation $x^2 + 2px - q^2 = 0$. The radius of the circle with AB as diameter is ::
 - (a) $\sqrt{a^2 + b^2 + p^2 + q^2}$ (b) $\sqrt{a^2 + p^2}$ (c) $\sqrt{b^2 + q^2}$ (d) $\sqrt{a^2 + b^2 + p^2 + 1}$
- **36.** Let C be the circle of radius unity centred at the origin. If two positive numbers x_1 and x_2 are such that the line passing through $(x_1, -1)$ and $(x_2, 1)$ is tangent to C then:
 - (a) $x_1 x_2 = 1$ (b) $x_1 x_2 = -1$
 - (c) $x_1 + x_2 = 1$ (d) $4x_1x_2 = 1$
- **37.** A circle bisects the circumference of the circle $x^2 + y^2 + 2y 3 = 0$ and touches the line x = y at the point (1, 1). Its radius is :
 - (a) $\frac{3}{\sqrt{2}}$ (b) $\frac{9}{\sqrt{2}}$ (c) $4\sqrt{2}$ (d) $3\sqrt{2}$
- **38.** The distance between the chords of contact of tangents to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ from the origin and the point (g, f) is:

(a)
$$\sqrt{g^2 + f^2}$$
 (b) $\frac{\sqrt{g^2 + f^2 - c}}{2}$
 $\sqrt{g^2 + f^2 - c}$ (c) $\sqrt{g^2 + f^2 - c}$

(c)
$$\frac{g+f-c}{2\sqrt{g^2+f^2}}$$
 (d) $\frac{\sqrt{g+f-c}}{2\sqrt{g^2+f^2}}$

- **39.** If the tangents AP and AQ are drawn from the point A(3, -1) to the circle $x^{2} + y^{2} - 3x + 2y - 7 = 0$ and C is the centre of circle, then the area of quadrilateral APCQ is : (d) non-existent (a) 9 (b) 4 (c) 2
- **40.** Number of integral value(s) of k for which no tangent can be drawn from the point (k, k + 2) to the circle $x^2 + y^2 = 4$ is :

- 41. If the length of the normal for each point on a curve is equal to the radius vector, then the curve :
 - (a) is a circle passing through origin
 - (b) is a circle having centre at origin and radius > 0
 - (c) is a circle having centre on x-axis and touching y-axis
 - (d) is a circle having centre on y-axis and touching x-axis
- **42.** A circle of radius unity is centred at origin. Two particles start moving at the same time from the point (1, 0) and move around the circle in opposite direction. One of the particle moves counter clockwise with constant speed v and the other moves clockwise with constant speed 3v. After leaving (1, 0), the two particles meet first at a point P, and continue until they meet next at point Q. The coordinates of the point Q are:
 - (a) (1,0) (b) (0, 1)
 - (c) (0, -1) (d) (-1,0)
- **43.** A variable circle is drawn to touch the x-axis at the origin. The locus of the pole of the straight line lx + my + n = 0 w.r.t the variable circle has the equation:
 - (a) $x(my-n) ly^2 = 0$ (b) $x(my+n) - ly^2 = 0$

(c)
$$x(my-n) + ly^2 = 0$$
 (d) none of these

- 44. The minimum length of the chord of the circle $x^2 + y^2 + 2x + 2y 7 = 0$ which is passing through (1, 0) is :
- (a) 2 (b) 4 (c) $2\sqrt{2}$ (d) $\sqrt{5}$ 45. Three concentric circles of which the biggest is $x^2 + y^2 = 1$, have their radii in A.P. If the line y = x + 1 cuts all the circles in real and distinct points. The interval in which the common difference of the A.P. will lie is:

(a)
$$\left(0, \frac{1}{4}\right)$$
 (b) $\left(0, \frac{1}{2\sqrt{2}}\right)$ (c) $\left(0, \frac{2-\sqrt{2}}{4}\right)$ (d) none

Circle

- 46. The locus of the point of intersection of the tangent to the circle $x^2 + y^2 = a^2$, which include an angle of 45° is the curve $(x^2 + y^2)^2 = \lambda a^2 (x^2 + y^2 - a^2)$. The value of λ is:
 - (a) 2 (b) 4 (c) 8
 - (d) 16
- 47. A circle touches the line y = x at point (4, 4) on it. The length of the chord on the line x + y = 0 is $6\sqrt{2}$. Then one of the possible equation of the circle is :
 - (a) $x^2 + y^2 + x y + 30 = 0$ (b) $x^2 + y^2 + 2x - 18y + 32 = 0$

(c)
$$x^2 + y^2 + 2x + 18y + 32 = 0$$
 (d) $x^2 + y^2 - 2x - 22y + 32 = 0$

48. Point on the circle $x^2 + y^2 - 2x + 4y - 4 = 0$ which is nearest to the line y = 2x + 11 is :

(a) $\left(1-\frac{6}{\sqrt{5}}, -2+\frac{3}{\sqrt{5}}\right)$ (b) $\left(1+\frac{6}{\sqrt{5}}, -2-\frac{3}{\sqrt{5}}\right)$ (c) $\left(1-\frac{6}{\sqrt{5}}, -2-\frac{3}{\sqrt{5}}\right)$ (d) None of these

49. A foot of the normal from the point (4, 3) to a circle is (2, 1) and a diameter of the circle has the equation 2x - y - 2 = 0. Then the equation of the circle is:

(a) $x^2 + y^2 - 4y + 2 = 0$ (b) $x^2 + y^2 - 4y + 1 = 0$

(c)
$$x^2 + y^2 - 2x - 1 = 0$$
 (d) $x^2 + y^2 - 2x + 1$

50. If $\left(a, \frac{1}{a}\right)$, $\left(b, \frac{1}{b}\right)$, $\left(c, \frac{1}{c}\right)$ and $\left(d, \frac{1}{d}\right)$ are four distinct points on a circle of radius 4 units then, *abcd* is equal to:

= 0

(a) 4 (b) 1/4 (c) 1 (d) 16

2	1							A	nsv	ver	S								2
1.	(a)	2.	(b)	3.	(a)	4.	(b)	5.	(Ъ)	6.	(c)	7.	(a)	8.	(d)	9.	(a)	10.	(b)
11.	(a)	12.	(a)	13.	(c)	14.	(d)	15.	(c)	16.	(a)	17.	(c)	18.	(a)	19.	(d)	20.	(a)
21.	(c)	22.	(b)	23.	(c)	24.	(c)	25.	(c)	26.	(Ъ)	27.	(c)	28.	(d)	29.	(d)	30.	(d)
31.	(d)	32.	(b)	33.	(d)	34.	(c)	35.	(a)	36.	(a)	37.	(Ь)	38.	(c)	39.	(d)	40.	(b)
41.	(b)	42.	(d)	43.	(a)	44.	(Ъ)	45.	(c)	46.	(c)	47.	(b)	48.	(a)	49.	(c)	50.	(c)

288

0

Exercise-2 : One or More than One Answer is/are Correct

- **1.** Number of circle touching both the axes and the line x + y = 4 is greater than or equal to : (a) 1
 - (b) 2 (c) 3
- (d) 4 2. Which of the following is/are true ?
 - The circles $x^2 + y^2 6x 6y + 9 = 0$ and $x^2 + y^2 + 6x + 6y + 9 = 0$ are such that :
 - (a) They do not intersect
 - (b) They touch each other
 - (c) Their exterior common tangents are parallel
 - (d) Their interior common tangents are perpendicular
- 3. Let ' α ' be a variable parameter, then the length of the chord of the curve :

$$(x - \sin^{-1} \alpha)(x - \cos^{-1} \alpha) + (y - \sin^{-1} \alpha)(y + \cos^{-1} \alpha) =$$

along the line $x = \frac{\pi}{4}$ can not be equal to :

- (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{2}$
- 4. If the point (1, 4) lies inside the circle $x^2 + y^2 6x 10y + p = 0$ and the circle does not touch or intersect the coordinate axes, then which of the following must be correct :
 - (a) p < 29 (b) p > 25
 - (c) p > 27(d) p < 27
- 5. The equation of a circle $S_1 = 0$ is $x^2 + y^2 = 4$, locus of the intersection of orthogonal tangents to the circle is the curve C_1 and the locus of the intersection of perpendicular tangents to the curve C_1 is the curve C_2 , then :
 - (a) C_2 is a circle
 - (b) C_1 , C_2 are circles having different centres
 - (c) C_1 , C_2 are circles having same centres
 - (d) area enclosed between C_1 and C_2 is 8π

6. If two distinct chords drawn from the point (p, q) on the circle $x^2 + y^2 = px + qy$ (where $pq \neq 0$) are bisected by the x-axis, then :

- (b) $p^2 > q^2$ (a) $p^2 = q^2$ (d) $p^2 > 8a^2$ (c) $p^2 < 8q^2$
- 7. If $a = \max\{(x+2)^2 + (y-3)^2\}$ and $b = \min\{(x+2)^2 + (y-3)^2\}$ where x, y satisfying $x^{2} + y^{2} + 8x - 10y - 40 = 0$, then :

(c) $a-b = 4\sqrt{2}$ (d) $a-b = 72\sqrt{2}$ (b) a + b = 178(a) a + b = 18

Circle

- 8. The locus of points of intersection of the tangents to $x^2 + y^2 = a^2$ at the extremeties of a chord of circle $x^2 + y^2 = a^2$ which touches the circle $x^2 + y^2 2ax = 0$ is/are :
 - (a) $y^2 = a(a-2x)$ (b) $x^2 = a(a-2y)$ (c) $x^2 + y^2 = (x-a)^2$ (d) $x^2 + y^2 = (y-a)^2$
- 9. A circle passes through the points (-1,1), (0,6) and (5,5). The point(s) on this circle, the tangent(s) at which is/are parallel to the straight line joining the origin to its centre is/are (a) (1,-5)
 (b) (5,1)
 (c) (-5,-1)
 (d) (-1,5)
- 10. A square is inscribed in the circle $x^2 + y^2 2x + 4y 93 = 0$ with the sides parallel to the co-ordinate axes. The co-ordinate of the vertices are :
 - (a) (8,5) (b) (8,9) (c) (-6,5) (d) (-6,-9)

2		199.72			Ansv	vers	Alge:	ad f			1.1
1.	(a, b, c, d)	2.	(a, c, d)	3.	(a, b, c)	4.	(a, b)	5.	(a, c, d)	6.	(b, d)
7.	(b, d)	8.	(a, c)	9.	(b, d)	10.	(a, c)				

8.	Let ther	$S = \{(x, y)$ the diameter	$(\sqrt{5} - 1)x - \sqrt{10 + 2}$ of <i>S</i> is :	$\overline{\sqrt{5}} \ y \ge 0$, $(\sqrt{5} - 1) \ x + \sqrt{5}$	$\sqrt{10+12\sqrt{5}} \ y \ge 0, \ x^2$	$+y^2 \leq 9$
	(a)	$\frac{3}{2}(\sqrt{5}-1)$	(b) 3(√5 – 1)	(c) $3\sqrt{2}$	(d) 3	
	Le x ²	$t L_1, L_2 \text{ and } L_3$ + $y^2 - 4x = 0$	Paragraph 1 be the lengths of tan and $x^2 + y^2 - 4y =$	for Question Nos. 9 for Question Nos. 9 for Question Nos. 9 for a point of the second state of the second	to 10 Int <i>P</i> to the circles x^2 + L_3^2 + 16 then the locus	$y^2 = 4,$ s of <i>P</i> are
	th	e curves, C_1 (a	straight line) and C_2	2 (a circle).		
9.	Circ and	um centre of th tangent to C ₂	e triangle formed by is :	C_1 and two other lines w	hich are at angle of 45	° with C_1
10.	(a) If <i>S</i> 1	(1,1) , S_2 and S_3 ar	(b) (0, 0) e three circles congr	(c) $(-1, -1)$ uent to C_2 and touch be	(d) (2, 2) th C ₁ and C ₂ ; then th	e area of

10. If S_1, S_2 and S_3	are three circles cong	ruent to C_2 and touch be	oth C_1 and C_2 ; then the	area
triangle formed	l by joining centres of	the circles S_1, S_2 and S_3 i	s (in square units)	
(a) 2	(b) 4	(c) 8	(d) 16	

2		and the second second						A	nsv	ver	S						and t		2
1.	(d)	2.	(b)	3.	(c)	4.	(b)	5.	(c)	6.	(c)	7.	(a)	8.	(d)	9.	(b)	10.	(c)

1-

Exercise-4 : Matching Type Problems

/	Column-I		Column-ll
(A)	The triangle PQR is inscribed in the circle $x^2 + y^2 = 169$. If Q(5, 12) and R(-12, 5) then $\angle QPR$ is	(P)	π/6
(B)	The angle between the lines joining the origin to the points of intersection of the line $4x + 3y = 24$ with circle $(x-3)^2 + (y-4)^2 = 25$	(Q)	π/4
(C)	Two parallel tangents drawn to given circle are cut by a third tangent. The angle subtended by the portion of third tangent between the given tangents at the centre is	(R)	π/3
(D)	A chord is drawn joining the point of contact of tangents drawn from a point P to the circle. If the chord subtends an angle $\pi/2$ at the centre then the angle included between the tangents at P is	(S)	π/2
		(T)	π

2.

	Column-l		Column-ll	T.
(A)	A ray of light coming from the point $(1, 2)$ is reflected at a point A on the x-axis then passes through the point (5, 3). The coordinates of the point A are :	(P)	$\left(\frac{13}{5},0\right)$	
(B)	The equation of three sides of triangle ABC are $x + y = 3$, x - y = 5 and $3x + y = 4$. Considering the sides as diameter, three circles S_1 , S_2 , S_3 are drawn whose radical centre is at :	(Q)	(4, -1)	
(C)	If the straight line $x - 2y + 1 = 0$ intersects the circle $x^2 + y^2 = 25$ at the points <i>P</i> and <i>Q</i> , then the coordinate of the point of intersection of tangents drawn at <i>P</i> and <i>Q</i> to the circle is	(R)	(–25, 50)	
(D)	The equation of three sides of a triangle are $4x + 3y + 9 = 0$, $2x + 3 = 0$ and $3y - 4 = 0$. The circum centre of the triangle is :	(S)	$\left(\frac{-19}{8},\frac{1}{6}\right)$	
		(T)	(-1, 2)	

Circle	a second second		293
2'		Answers	le como de la como de
1. $A \rightarrow Q$; H	$B \rightarrow S; C \rightarrow S; D \rightarrow S$		
2. $A \rightarrow P$; B	$B \rightarrow Q; C \rightarrow R; D \rightarrow S$		5

Exercise-5 : Subjective Type Problems

- 1. Tangents are drawn to circle $x^2 + y^2 = 1$ at its intersection points (distinct) with the circle $x^2 + y^2 + (\lambda 3)x + (2\lambda + 2)y + 2 = 0$. The locus of intersection of tangents is a straight line, then the slope of that straight line is.
- 2. The radical centre of the three circles is at the origin. The equations of the two of the circles are $x^2 + y^2 = 1$ and $x^2 + y^2 + 4x + 4y 1 = 0$. If the third circle passes through the points (1, 1) and (-2, 1); and its radius can be expressed in the form of $\frac{p}{q}$, where p and q are relatively prime

positive integers. Find the value of (p + q).

- **3.** Let $S = \{(x, y) | x, y \in R, x^2 + y^2 10x + 16 = 0\}$. The largest value of $\frac{y}{x}$ can be put in the form $\frac{m}{n}$ where *m*, *n* are relatively prime natural numbers, then $m^2 + n^2 =$
- 4. In the above problem, the complete range of the expression $x^2 + y^2 26x + 12y + 210$ is [a, b], then b - 2a =
- **5.** If the line y = 2 x is tangent to the circle *S* at the point *P*(1, 1) and circle *S* is orthogonal to the circle $x^2 + y^2 + 2x + 2y 2 = 0$, then find the length of tangent drawn from the point (2, 2) to circle *S*.
- **6.** Two circles having radii r_1 and r_2 passing through vertex A of a triangle ABC. One of the circle touches the side BC at B and other circle touches the side BC at C. If a = 5 and $A = 30^{\circ}$; find $\sqrt{r_1r_2}$.
- 7. A circle S of radius 'a' is the director circle of another circle S_1 . S_1 is the director circle of S_2 and so on. If the sum of radius of S, S_1 , S_2 , S_3 circles is '2' and $a = (k \sqrt{k})$, then the value of k is
- 8. If r_1 and r_2 be the maximum and minimum radius of the circle which pass through the point (4, 3) and touch the circle $x^2 + y^2 = 49$, then $\frac{r_1}{r_2}$ is
- 9. Let C be the circle $x^2 + y^2 4x 4y 1 = 0$. The number of points common to C and the sides of the rectangle determined by the lines x = 2, x = 5, y = -1 and y = 5 is P then find P.
- 10. Two congruent circles with centres at (2, 3) and (5, 6) intersects at right angle; find the radius of the circle.
- **11.** The sum of abscissa and ordinate of a point on the circle $x^2 + y^2 4x + 2y 20 = 0$ which is nearest to $\left(2, \frac{3}{2}\right)$ is :
- **12.** AB is any chord of the circle $x^2 + y^2 6x 8y 11 = 0$ which subtends an angle $\frac{\pi}{2}$ at (1, 2). If locus of midpoint of AB is a circle $x^2 + y^2 2ax 2by c = 0$; then find the value of (a + b + c).

13. If circles $x^2 + y^2 = c$ with radius $\sqrt{3}$ and $x^2 + y^2 + ax + by + c = 0$ with radius $\sqrt{6}$ intersect at two points A and B. If length of $AB = \sqrt{l}$. Find l.

Chapter 19 - Parabola

19	9			PA	RABOLA
🎯 Exe	rcise-1 : Sinale	Choice Problems			
1. Let <i>I</i>	PQ be the latus re	ectum of the parabola	$y^2 = 4x$	with vertex A.	Minimum length of the
proje	ection of PQ on a t	angent drawn in porti	on of par	rabola PAQ is :	
(a)	2		(b) 4		
(c)	2√3		(d) 2√	$\sqrt{2}$	
2. A no diam poin	rmal is drawn to neter; where <i>S</i> is th t <i>P</i> is : 17	the parabola $y^2 = 9x$ the focus. The length of (b) $\frac{15}{2}$	the inter	int P(4, 6). A circ	cle is described on <i>SP</i> as e circle on the normal at
(a)	4	4	(c) +		(4) 5
3. A tra (1, 0)	pezium is inscribe) and each has len	ed in the parabola $y^2 =$ gth $\frac{25}{4}$. If the area of $\frac{1}{4}$	= 4x, such the trape:	n that its diagona zium be P, then	ll pass through the point 4P is equal to :
(a)	70	(b) 71	(c) 80)	(d) 75
4. The l :	ength of normal c	hord of parabola $y^2 =$	4x, whic	h subtends an an	gle of 90° at the vertex is
(a)	6√3	(b) 7√2	(c) 8-	$\sqrt{2}$	(d) $9\sqrt{2}$
5. If b a	nd c are the lengt	hs of the segments of	any focal	l chord of a para	bola $v^2 = 4ax$. Then the
lengt	h of semi-latus re	ctum is :		-	
(a)	bc		(b) $\frac{2}{1}$	bc	
(u)	b + c		Ь	+ c	
(c)	$\frac{b+c}{2}$		(d) √l	bc	
6. The lat a p	ength of the shorte point on the parab	est path that begins at old $(x - y)^2 = 2(x + y)^2$	the point 7 – 4), is :	t (–1, 1), touches :	the x-axis and then end
	a /a	(b) 5	(0) 1	10	

7. If the normals at three points P, Q, R of the para	bola $y^2 = 4ax$ meet in a point O' and S be its
focus, then $ SP \cdot SQ \cdot SR $ is equal to :	2(201)
$(2) = (10)^{2}$	
(c) a(SO) (d) None of these
8. Let P and Q are points on the parabola $y^2 = 4ax y$	with vertex O, such that OP is perpendicular to $4/3$ $4/3$
OQ and have lengths r_1 and r_2 respectively, then	the value of $\frac{r_1^{r_1} \cdot s_2^{r_2} \cdot s_2^{r_2}}{r_1^{2/3} + r_2^{2/3}}$ is :
(a) $16a^2$ (b) a^2 (c)	d) 4a (d) None of these
9. Length of the shortest chord of the parabola y^2	= $4x + 8$, which belongs to the family of lines
$(1 + \lambda)y + (\lambda - 1)x + 2(1 - \lambda) = 0$, is :	
(a) 6 (b) 5 (c) 8 (d) 2
10. If locus of mid-point of any normal chord of the	parabola :
$y^2 = 4x \text{ is } x - a = \frac{b}{y}$	$\frac{y^2}{2} + \frac{y^2}{c};$
where $a, b, c \in N$, then $(a + b + c)$ equals to :	
(a) 5 (b) 8 (c	:) 10 (d) None of these
11. Let tangents at P and Q to curve $y^2 - 4x - 2y + 5 = 5$	= 0 intersect at T. If $S(2, 1)$ is a point such that
(SP)(SQ) = 16, then the length ST is equal to :	
(a) 3 (b) 4 (c	:) 5 (d) None of these
12. Abscissa of two points P and Q on parabola $y^2 = 8$	8x are roots of equation $x^2 - 17x + 11 = 0$. Let
Tangents at P and Q meet at point T, then distan	ce of T from the focus of parabola is :
(a) 7 (b) 6 (c	.) 5 (d) 4
13. If $Ax + By = 1$ is a normal to the curve $ay = x^2$, t	nen :
(a) $4A^2(1-aB) = aB^3$ (b)	$4A^{2}(2+aB) = aB^{3}$
(c) $4A^2(1+aB) + aB^3 = 0$ (d)	1) $2A^2(2-aB) = aB^3$
14. The equation of a curve which passes through the tangent between the point of tangency and the x-axis is -	he point (3, 1), such that the segment of any axis is bisected at its point of intersection with
(a) $r = 3y^2$ (b) $x^2 = 9y$ (c)	2) $x = y^2 + 2$ (d) $2x = 3y^2 + 3$
15. The parabola $y = 4 - x^2$ has vertex <i>P</i> . It intersects	s x-axis at A and B. If the parabola is translated
from its initial position to a new position by movi	ing its vertex along the line $y = x + 4$, so that it
intersects x-axis at B and C, then abscissa of C w	ill be :

(a) 3 (b) 4 (c) 6 (d) 8

16. A focal chord for parabola $y^2 = 8(x + 2)$ is inclined at an angle of 60° with positive x-axis and intersects the parabola at P and Q. Let perpendicular bisector of the chord PQ intersects the x-axis at R; then the distance of R from focus is : (d) 8√3 8 (b) $\frac{16\sqrt{3}}{3}$ (c) $\frac{16}{3}$ (a) **17.** The Director circle of the parabola $(y-2)^2 = 16(x+7)$ touches the circle $(x-1)^2 + (y+1)^2 = r^2$, then *r* is equal to : (d) None of these (a) 10 (b) 11 (c) 12 **18.** The chord of contact of a point $A(x_A, y_A)$ of $y^2 = 4x$ passes through (3, 1) and point A lies on $x^2 + y^2 = 5^2$. Then : (a) $5x_A^2 + 24x_A + 11 = 0$ (b) $13x_A^2 + 8x_A - 21 = 0$ (c) $5x_A^2 + 24x_A + 61 = 0$ (d) $13x_A^2 + 21x_A - 31 = 0$

1	1							A	ns	ver	5							- 1 	1
1.	(d)	2.	(b)	3.	(d)	4.	(a)	5.	(b)	6.	(a)	7.	(c)	8.	(a)	9.	(c)	10.	(b)
11.	(b)	12.	(a)	13.	(d)	14.	(a)	15.	(d)	16.	(c)	17.	(c)	18.	(a)				

- **1.** PQ is a double ordinate of the parabola $y^2 = 4ax$. If the normal at P intersect the line passing through Q and parallel to x-axis at G; then locus of G is a parabola with :
 - (a) vertex at (4a, 0)

- (b) focus at (5a, 0)
- (c) directrix as the line x 3a = 0
- (d) length of latus rectum equal to 4a

Exercise-3 : Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Consider the following lines :

 $L_{1} : x - y - 1 = 0$ $L_{2} : x + y - 5 = 0$ $L_{3} : y - 4 = 0$

Let L_1 is axis to a parabola, L_2 is tangent at the vertex to this parabola and L_3 is another tangent to this parabola at some point *P*.

Let 'C' be the circle circumscribing the triangle formed by tangent and normal at point P and axis of parabola. The tangent and normals at the extremities of latus rectum of this parabola forms a quadrilateral *ABCD*.

1. The equation of the circle '*C*' is :

	(a)	$x^2 + y^2 - 2x - 31$	= 0	(b)	$x^2 + y^2 - 2y - 31$	= 0	
	(c)	$x^2 + y^2 - 2x - 2y$	-31 = 0	(d)	$x^2 + y^2 + 2x + 2y$	= 31	L
2.	The	given parabola is e	equal to which of the fo	llow	ing parabola ?		
	(a)	$y^2 = 16\sqrt{2} x$		(b)	$x^2 = -4\sqrt{2}y$		
	(c)	$y^2 = -\sqrt{2}x$		(d)	$y^2 = 8\sqrt{2}x$		
3.	The	area of the quadri	lateral ABCD is :				
	(a)	16	(b) 8	(c)	64	(d)	32

2			Ans	swers		1
1. (a)	2. (d)	3. (c)				

Section 2014 Exercise-4 : Matching Type Problems

-		
	0	

/	Column-I	/	Column-II	
(A)	The equation of tangent to the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ which cuts off equal intercepts on axes is $x - y = a$ where $ a $	(P)	$\sqrt{2}$	
	equal to		1000	
(B)	The normal $y = mx - 2am - am^2$ to the parabola	(Q)	$\sqrt{3}$	
	$y^2 = 4ax$ subtends a right angle at the vertex if $ m $ equal			
	to			
(C)	The equation of the common tangent to parabola	(R)	$\sqrt{8}$	
	$y^2 = 4x$ and $x^2 = 4y$ is $x + y + \frac{k}{\sqrt{3}} = 0$, then k is equal to			
(D)	An equation of common tangent to parabola $y^2 = 8x$	(S)	$\sqrt{41}$	
	and the hyperbola $3x^2 - y^2 = 3$ is $4x - 2y + \frac{k}{\sqrt{2}} = 0$,			
	then k is equal to			
		(T)	2	

.

1.1.1

2.

	Column-I		Column-II
(A)	Area of ΔPQR is equal to	(P)	2
(B)	Radius of circumcircle of $\triangle PQR$ is equal to	(Q)	$\frac{5}{2}$
(C)	Distance of the vertex from the centroid of $\triangle PQR$ is equal to	(R)	$\frac{3}{2}$
(D)	Distance of the centroid from the circumcentre of $\triangle PQR$ is equal to	(S)	$\frac{2}{3}$
		(T)	$\frac{11}{6}$
1	Answers		100

Exercise-5 : Subjective Type Problems

- 1. Points A and B lie on the parabola $y = 2x^2 + 4x 2$, such that origin is the mid-point of the line segment AB. If 'l' be the length of the line segment AB, then find the unit digit of l^2 .
- 2. For the parabola $y = -x^2$, let a < 0 and b > 0; $P(a, -a^2)$ and $Q(b, -b^2)$. Let M be the mid-point of PQ and R be the point of intersection of the vertical line through M, with the parabola. If the ratio of the area of the region bounded by the parabola and the line segment PQ to the area of the triangle PQR be $\frac{\lambda}{\mu}$; where λ and μ are relatively prime positive integers, then find the value of $(\lambda + \mu)$:
- **3.** The chord AC of the parabola $y^2 = 4ax$ subtends an angle of 90° at points B and D on the parabola. If points A, B, C and D are represented by $(at_i^2, 2at_i)$, i = 1, 2, 3, 4 respectively, then find the value of $\left|\frac{t_2 + t_4}{t_1 + t_3}\right|$.

Chapter 20 - Ellipse

1:5-

Exercise-1 : Single Choice Problems

1. If *CF* be the perpendicular from the centre *C* of the ellipse $\frac{x^2}{12} + \frac{y^2}{8} = 1$, on the tangent at any point P and G is the point where the normal at P meets the major axis, then the value of $(CF \cdot PG)$ equals to : (d) None of these (c) 8 (a) 5 (b) 6 2. The minimum length of intercept on any tangent to the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ cut by the circle $x^{2} + y^{2} = 25$ is : (d) 11 (c) 2 (a) 8 (b) 9 **3.** The point on the ellipse $x^2 + 2y^2 = 6$, whose distance from the line x + y = 7 is minimum is : (d) None of these (c) (1, 0) (b) (2, 1) (a) (2, 3) **4.** If lines 2x + 3y = 10 and 2x - 3y = 10 are tangents at the extremities of a latus rectum of an ellipse; whose centre is origin, then the length of the latus rectum is : (c) $\frac{100}{27}$ (d) $\frac{120}{27}$ (b) $\frac{98}{27}$ (a) $\frac{110}{27}$ 5. The area bounded by the circle $x^2 + y^2 = a^2$ and the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is equal to the area of another ellipse having semi-axes : (c) a and b(d) None of these (b) a-b and a(a) a+b and b6. If F_1 and F_2 are the feet of the perpendiculars from foci S_1 and S_2 of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ on the tangent at any point P of the ellipse, then :

(a) $S_1F_1 + S_2F_2 \ge 2$ (b) $S_1F_1 + S_2F_2 \ge 3$ (c) $S_1F_1 + S_2F_2 \ge 6$ (d) $S_1F_1 + S_2F_2 \ge 8$

7. Consider the ellipse $\frac{x^2}{f(k^2+2k+5)} + \frac{y^2}{f(k+11)} = 1$, where $f(x)$ is a positive decreasing
$f(k^2 + 2k + 5)$ $f(k + 11)$ function, then the value of k for which major axis coincides with x -axis is : (a) $k \in (-7, -5)$ (b) $k \in (-5, -3)$ (c) $k \in (-3, 2)$ (d) None of these
8. If area of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ inscribed in a square of side length $5\sqrt{2}$ is A, then $\frac{A}{\pi}$ equals to :
(a) 12 (b) 10 (c) 8 (d) 11 9. Any chord of the conic $x^2 + y^2 + xy = 1$ passing through origin is bisected at a point (p, q), then
(p+q+12) equals to : (a) 13 (b) 14 (c) 11 (d) 12
10. Tangents are drawn from the point (4, 2) to the curve $x^2 + 9y^2 = 9$, the tangent of angle between the tangents :
(a) $\frac{3\sqrt{3}}{5\sqrt{17}}$ (b) $\frac{\sqrt{43}}{10}$ (c) $\frac{\sqrt{43}}{5}$ (d) $\sqrt{\frac{3}{17}}$
Anorea
Answers
1. (c) 2. (a) 3. (b) 4. (c) 5. (b) 6. (d) 7. (c) 8. (a) 9. (d) 10. (c)
2.

Exercise-2 : Comprehension Type Problems

An ellipse has semi-major axis of length 2 and semi-minor axis of length 1. It slides between the co-ordinate axes in the first quadrant, while maintaining contact with both x-axis and y-axis.

1. The locus of the centre of ellipse is :

(a)
$$x^{2} + y^{2} = 3$$

(b) $x^{2} + y^{2} = 5$
(c) $(x-2)^{2} + (y-1)^{2} = 5$
(d) $(x-2)^{2} + (y-1)^{2} = 3$
The locus of the foci of the ellipse is :
(a) $x^{2} + y^{2} + \frac{1}{x^{2}} + \frac{1}{y^{2}} = 16$
(b) $x^{2} + y^{2} + \frac{1}{x^{2}} - \frac{1}{y^{2}} = 2\sqrt{3} + 4$
(c) $x^{2} + y^{2} - \frac{1}{x^{2}} - \frac{1}{y^{2}} = 2\sqrt{3} + 4$
(d) $x^{2} - y^{2} + \frac{1}{x^{2}} - \frac{1}{y^{2}} = 2\sqrt{3} + 4$

Paragraph for Question Nos. 3 to 5

A coplanar beam of light emerging from a point source have the equation $\lambda x - y + 2(1 + \lambda) = 0$, $\forall \lambda \in R$; the rays of the beam strike an elliptical surface and get reflected inside the ellipse. The reflected rays form another convergent beam having the equation $\mu x - y + 2(1 - \mu) = 0$, $\forall \mu \in R$. Further it is found that the foot of the perpendicular from the point (2, 2) upon any tangent to the ellipse lies on the circle $x^2 + y^2 - 4y - 5 = 0$

3. The eccentricity of the ellipse is equal to :

(a) $\frac{1}{3}$ (b) $\frac{1}{\sqrt{3}}$	(c) $\frac{2}{3}$ (d) $\frac{1}{2}$
--	-------------------------------------

4. The area of the largest triangle that an incident ray and corresponding reflected ray can enclose with the major axis of the ellipse is equal to :

(a)	4√5	(b)	√5
(c)	3√5	(d)	2√5

5. The least value of total distance travelled by an incident ray and the corresponding reflected ray is equal to :

(a)	6	(b)	3
(c)	$\sqrt{5}$	(d)	2√5

2		-					A	nswer	S		100
1. (b)	2.	(a)	3.	(c)	4.	(d)	5.	(a)			

NY W.

5

Exercise-3 : Matching Type Problems

/	Column-I		Column-ll
(A)	If the tangent to the ellipse $x^2 + 4y^2 = 16$ at the point $P(4\cos\phi, 2\sin\phi)$ is a normal to the circle $x^2 + y^2 - 8x - 4y = 0$ then $\frac{\phi}{2}$ may be	(P)	0
(B)	The eccentric angle(s) of a point on the ellipse $x^2 + 3y^2 = 6$ at a distance 2 units from the centre of the ellipse is/are	(Q)	$\cos^{-1}\left(-\frac{2}{3}\right)$
(C)	The eccentric angle of point of intersection of the ellipse $x^{2} + 4y^{2} = 4$ and the parabola $x^{2} + 1 = y$ is	(R)	$\frac{\pi}{4}$
(D)	If the normal at the point $P(\sqrt{14}\cos\theta, \sqrt{5}\sin\theta)$ to the ellipse $\frac{x^2}{14} + \frac{y^2}{5} = 1$ intersect it again at the point $Q(\sqrt{14}\cos 2\theta, \sqrt{5}\sin 2\theta)$, then θ is	(S)	$\frac{5\pi}{4}$
		(T)	$\frac{\pi}{2}$

.

	Answers	and the first of the second
1. $A \rightarrow P, R; B \rightarrow R, S; C \rightarrow P; D \rightarrow Q$		

Ellipse

Exercise-4 : Subjective Type Problems

1. For the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$. Let *O* be the centre and *S* and *S'* be the foci. For any point *P* on the ellipse the value of *PS*. *PS'd*² (where *d* is the distance of *O* from the tangent at *P*) is equal to

307

~ J .. -

2. Number of perpendicular tangents that can be drawn on the ellipse $\frac{x^2}{16} + \frac{y^2}{25} = 1$ from point (6, 7) is

4	2	0					
---	---	---	--	--	--	--	--

Chapter 21 – Hyperbola

Hyperbola

6.	Anc	ormal to the hy	yperbola $\frac{x^2}{4}$	$-\frac{y^2}{1}$	= 1 has equ	al in	terce	pts on p	oositive	exa	nd po	ositive	y-axes. If
	this	normal touch	es the ellip	$se \frac{x^2}{a^2}$	$+\frac{y^2}{b^2}=1, \text{ th}$	ien 3	3(a ² -	- b ²) is	equal	to :	z		
	(a)	5	(b) 2	5		(c)	16			(d)	Nor	ne of tl	nese
7.	Locu	us of a point,	whose chor	d of co	ontact with	resp	ect to	the cir	cle x^2	+ y	² = 4	is a t	angent to
	the	hyperbola <i>xy</i>	=1 is a/an	:		•				-			
	(a)	ellipse				(b)	circl	е					
	(c)	hyperbola				(d)	para	bola					
8.	Let	the chord x co	$\cos \alpha + y \sin \beta$	$\alpha = p$	of the hype	rbola	$a\frac{x^2}{16}$	$-\frac{y^2}{18} =$	1 subte	ends	a riş	ght an	gle at the
	cent	tre. Let diame	ter of the c	rcle, c	concentric w	ith t	he hy	perbola	a, to wl	hich	the	given o	chord is a
	tang	gent is d, then	$\frac{d}{4}$ is equal	: 0	2								
	(a)	4	(b)	5		(c)	6			(d)	7		
9.	If th	ne tangent and	d normal at	a poin	nt on rectang	gular	hype	rbola c	ut-off i	nter	cept	a ₁ , a ₂	on <i>x</i> -axis
	and	b_1, b_2 on the	y-axis, the	$n a_1 a_2$	$+b_1b_2$ is eq	lual	to :						
	(a)	2	(b) ·	$\frac{1}{2}$		(c)	0			(d)	-1		

5----

Exercise-2 : One or More than One Answer is/are Correct

1. A common tangent to the hyperbola $9x^2 - 16y^2 = 144$ and the circle $x^2 + y^2 = 9$ is/are :

(a)	$y = \frac{3}{\sqrt{7}}x + \frac{15}{\sqrt{7}}$	(b)	$y = 3\sqrt{\frac{2}{\sqrt{7}}}x + \frac{25}{\sqrt{7}}$
(c)	$y = 2\sqrt{\frac{3}{7}}x + 15\sqrt{7}$	(d)	$y = -3\sqrt{\frac{2}{\sqrt{7}}}x + \frac{25}{\sqrt{7}}$

2. Tangents are drawn to the hyperbola $x^2 - y^2 = 3$ which are parallel to the line 2x + y + 8 = 0. Then their points of contact is/are :

	(a)	(2, 1)	(b)	(2, -1)
	(c)	(-2, -1)	(d)	(-2, 1)
3.	If th	the line $ax + by + c = 0$ is normal to the cu	rve x	y = 1, then:
	(a)	a > 0, b > 0	(b)	a > 0, b < 0
	(c)	<i>b</i> < 0, <i>a</i> < 0	(d)	a < 0, b > 0
4.	A ci	rcle cuts rectangular hyperbola $xy = 1$ in	the po	pints (x_{-}, y_{-})

A circle cuts rectangular hyperbola
$$xy = 1$$
 in the points (x_r, y_r) , $r = 1, 2, 3, 4$ then :
(a) $y_1y_2y_3y_4 = 1$ (b) $x_1x_2x_3x_4 = 1$

(c)
$$x_1 x_2 x_3 x_4 = y_1 y_2 y_3 y_4 = -1$$
 (d) $y_1 y_2 y_3 y_4 = 0$

1.7			Answer	6	and an or mail to the second	and some states of a second for and	
							le:
1. (b,	, d) 2.	(b, d) 3.	(b, d) 4 .	(a, b)			

Hyperbola

311 Exercise-3 : Comprehension Type Problems 1:5-Paragraph for Question Nos. 1 to 3 A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola xy = 16 is equal to the sum of the ordinates of the feet of the normals. Let 'P' lies on the curve C, then : 1. The equation of 'C' is : (b) $x^2 = 16y$ (d) $y^2 = 8x^{33}$ (a) $x^2 = 4y$ (c) $x^2 = 12y$

- 2. If tangents are drawn to the curve C, then the locus of the midpoint of the portion of tangent intercepted between the co-ordinate axes, is :
 - (a) $x^2 = 4y$ (b) $x^2 = 2y$ (c) $x^2 + 2y = 0$ (d) $x^2 + 4y = 0$
- 3. Area of the equilateral triangle, inscribed in the curve C, and having one vertex same as the
 - vertex of C is : (b) 776√3 (a) 768√3
 - (c) 760√3

(d) None of these

2.	and the second se	Answers	621
1. (b) 2. (c)	3. (a)		

65

Exercise-4 : Subjective Type Problems

312

- **1.** Let y = mx + c be a common tangent to $\frac{x^2}{16} \frac{y^2}{9} = 1$ and $\frac{x^2}{4} + \frac{y^2}{3} = 1$, then find the value of $m^2 + c^2$.
- 2. The maximum number of normals that can be drawn to an ellipse/hyperbola passing through a given point is :
- **3.** Tangent at *P* to rectangular hyperbola xy = 2 meets coordinate axes at *A* and *B*, then area of triangle *OAB* (where *O* is origin) is :

Trigonometry

- 22. Compound Angles
- **23.** Trigonometric Equations
- **24.** Solution of Triangles
- **25.** Inverse Trigonometric Functions

Chapter 22 – Compound Angles

Exercise-1: Single Choice Problems
1.
$$\left(\cos^4 \frac{\pi}{24} - \sin^4 \frac{\pi}{24}\right)$$
 equals :
(a) $\frac{1}{\sqrt{2}}$ (b) $\frac{\sqrt{6} - \sqrt{2}}{4}$ (c) $\frac{\sqrt{6} + \sqrt{2}}{4}$ (d) $\frac{\sqrt{3} + 1}{2}$
2. If a sin $x + b \cos(c + x) + b \cos(c - x) = a, a > a$, then the minimum value of $|\cos c|$ is :
(a) $\sqrt{\frac{a^2 - a^2}{b^2}}$ (b) $\sqrt{\frac{a^2 - a^2}{2b^2}}$ (c) $\sqrt{\frac{a^2 - a^2}{3b^2}}$ (d) $\sqrt{\frac{a^2 - a^2}{4b^2}}$
3. If all values of $x \in (a, b)$ satisfy the inequality tan $x \tan 3x < -1, x \in (0, \frac{\pi}{2})$, then the maximum value $(b - a)$ is :
(a) $\frac{\pi}{12}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{4}$
4. $\sum_{r=1}^{8} \tan (rA) \tan ((r + 1)A)$ where $A = 36^{\circ}$ is :
(a) $-10 - \tan A$ (b) $-10 + \tan A$ (c) -10 (d) -9
5. Let $f(x) = 2 \csc 2x + \sec x + \csc x$, then minimum value of $f(x)$ for $x \in (0, \frac{\pi}{2})$ is :
(a) $\frac{1}{\sqrt{2} - 1}$ (b) $\frac{2}{\sqrt{2} - 1}$ (c) $\frac{1}{\sqrt{2} + 1}$ (d) $\frac{2}{\sqrt{2} + 1}$
6. The exact value of $\csc 10^{\circ} + \csc 50^{\circ} - \csc 70^{\circ}$ is :
(a) 4 (b) 5 (c) 6 (d) 8
7. If $u = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$, then the difference between the maximum and minimum values of u^2 is given by :
(a) $2(a^2 + b^2)$ (b) $2\sqrt{a^2 + b^2}$ (c) $(a + b)^2$ (d) $(a - b)^2$

8. If $u_n = \sin(n\theta) \sec^n \theta$, $v_n = \cos(n\theta) \sec^n \theta$, $n \in N$, $n \neq 1$, then $\frac{v_n - v_{n-1}}{u_{n-1}} + \frac{1}{n} \frac{u_n}{v_n} =$ (a) $-\cot\theta + \frac{1}{n}\tan(n\theta)$ (b) $\cot \theta + \frac{1}{n} \tan(n\theta)$ (d) $-\tan\theta + \frac{\tan(n\theta)}{n}$ (c) $\tan \theta + \frac{1}{n} \tan(n\theta)$ 9. If $a \cos^2 3\alpha + b \cos^4 \alpha = 16 \cos^6 \alpha + 9 \cos^2 \alpha$ is an identity, then (d) a = 7, b = 18(a) a = 1, b = 24(b) a = 3, b = 24(c) a = 4, b = 2**10.** Maximum value of $\cos x (\sin x + \cos x)$ is equal to : (c) $\frac{\sqrt{2}+1}{2}$ (d) $\sqrt{2} + 1$ (a) $\sqrt{2}$ (b) 2 **11.** If $\frac{\sin A}{\sin B} = \frac{\sqrt{3}}{2}$ and $\frac{\cos A}{\cos B} = \frac{\sqrt{5}}{2}$, $0 < A, B < \frac{\pi}{2}$ then $\tan A + \tan B$ is equal to : (b) $\sqrt{\frac{5}{3}}$ (c) $\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}$ (d) $\frac{\sqrt{3} + \sqrt{5}}{\sqrt{3}}$ (a) $\sqrt{\frac{3}{5}}$ **12.** Let $0 \le \alpha, \beta, \gamma, \delta \le \pi$ where β and γ are not complementary such that $2\cos\alpha + 6\cos\beta + 7\cos\gamma + 9\cos\delta = 0$ $2\sin\alpha - 6\sin\beta + 7\sin\gamma - 9\sin\delta = 0$ and If $\frac{\cos(\alpha + \delta)}{\cos(\beta + \gamma)} = \frac{m}{n}$ where m and n are relatively prime positive numbers, then the value of (m+n) is equal to : (a) 11 (b) 10 (c) 9 **13.** If $-\pi < \theta < -\frac{\pi}{2}$, then $\left| \sqrt{\frac{1-\sin\theta}{1+\sin\theta}} + \sqrt{\frac{1+\sin\theta}{1-\sin\theta}} \right|$ is equal to : (a) 11 (d) 7 (c) $2 \sec \frac{\theta}{2}$ (a) 2 sec θ (b) -2secθ (d) $-\sec\frac{\theta}{2}$ **14.** If $A = \sum_{r=1}^{3} \cos \frac{2r\pi}{7}$ and $B = \sum_{r=1}^{3} \cos \frac{2^{r}\pi}{7}$, then : (a) A + B = 0(b) 2A + B = 0(c) A + 2B = 0(d) A = B**15.** In a $\triangle PQR$ (as shown in figure) if x: y: z = 2:3:6, then the value of $\angle QPR$ is : (a) $\frac{\pi}{6}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{2}$ (d) $\frac{\pi}{c}$ 0

16. If $A = \sum_{r=1}^{3} \cos \frac{2r\pi}{7}$ and $B = \sum_{r=1}^{3} \cos \frac{2^{r}\pi}{7}$, then : (a) A + B = 0(b) 2A + B = 0(d) A - B = 0(c) A + 2B = 017. Let $f(x) = \sin x + 2\cos^2 x$; $\frac{\pi}{6} \le x \le \frac{2\pi}{3}$, then maximum value of f(x) is : (b) $\frac{3}{2}$ (d) $\frac{5}{2}$ (a) 1 (c) 2 **18.** In $\triangle ABC$, $\angle C = \frac{2\pi}{3}$ then the value of $\cos^2 A + \cos^2 B - \cos A \cdot \cos B$ is equal to : (a) $\frac{3}{4}$ (b) $\frac{3}{2}$ (c) $\frac{1}{2}$ (d) $\frac{1}{4}$ **19.** The number of solutions of the equation $4\sin^2 x + \tan^2 x + \cot^2 x + \csc^2 x = 6 in [0, 2\pi]$: (b) 2 (d) 4 (a) 1 (c) 3 **20.** If sin A, cos A and tan A are in G.P., then $\cos^3 A + \cos^2 A$ is equal to : (c) 4 (d) none (b) 2 (a) 1 **21.** Range of function $f(x) = \sin\left(x + \frac{\pi}{6}\right) + \cos\left(x - \frac{\pi}{6}\right)$ is : (b) $\left[-\sqrt{2}(\sqrt{3}+1), \sqrt{2}(\sqrt{3}+1)\right]$ (a) $[-\sqrt{2}, \sqrt{2}]$ (d) $\left[-\frac{\sqrt{3}-1}{\sqrt{2}}, \frac{\sqrt{3}-1}{\sqrt{2}}\right]$ (c) $\left[-\frac{\sqrt{3}+1}{\sqrt{2}}, \frac{\sqrt{3}+1}{\sqrt{2}}\right]$ 22. The value of $\tan(\log_2 6) \cdot \tan(\log_2 3) \cdot \tan 1$ is always equal to : (a) $\tan(\log_2 6) + \tan(\log_2 3) + \tan 1$ (b) $\tan(\log_2 6) - \tan(\log_2 3) - \tan 1$ (c) $\tan(\log_2 6) - \tan(\log_2 3) + \tan 1$ (d) $\tan(\log_2 6) + \tan(\log_2 3) - \tan 1$ **23.** In a triangle ABC, side BC = 3, AC = 4 and AB = 5. The value of $\sin A + \sin 2B + \sin 3C$ is equal to: (c) $\frac{64}{25}$ (b) $\frac{14}{25}$ (d) none (a) $\frac{24}{25}$ 25 24. If $A + B + C = 180^\circ$, then $\frac{\cos A \cos C + \cos (A + B) \cos (B + C)}{\cos A \sin C - \sin (A + B) \cos (B + C)}$ simplifies to : (d) cot C (c) tanC (b) 0 (a) $-\cot C$ **25.** If $\alpha + \gamma = 2\beta$ then the expression $\frac{\sin \alpha - \sin \gamma}{\cos \gamma - \cos \alpha}$ simplifies to : (d) $-\cot\beta$ (c) $\cot\beta$ (b) $-\tan\beta$ (a) $tan\beta$

26. The product $\left(\cos\frac{x}{2}\right) \cdot \left(\cos\frac{x}{4}\right) \cdot \left(\cos\frac{x}{8}\right) \cdot \dots \cdot \left(\cos\frac{x}{256}\right)$ is equal to : (a) $\frac{\sin x}{128 \sin \frac{x}{256}}$ (b) $\frac{\sin x}{256 \sin \frac{x}{256}}$ (c) $\frac{\sin x}{128 \sin \frac{x}{128}}$ (d) $\frac{\sin x}{512 \sin \frac{x}{512}}$ The value of the expression $\frac{\sin 7\alpha + 6\sin 5\alpha + 17\sin 3\alpha + 12\sin \alpha}{\sin 6\alpha + 5\sin 4\alpha + 12\sin 2\alpha}, \text{ where } \alpha = \frac{\pi}{5} \text{ is equal to :}$ (a) $\frac{\sqrt{5}-1}{4}$ (b) $\frac{\sqrt{5}+1}{4}$ (d) $\frac{\sqrt{5}-1}{2}$ (c) $\frac{\sqrt{5}+1}{2}$ **28.** In a triangle ABC if $\sum \tan^2 A = \sum \tan A \tan B$, then largest angle of the triangle in radian will be : (a) $\frac{2\pi}{3}$ (d) $\frac{3\pi}{4}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{2}$ **29.** Which one of the following values is not the solution of the equation $\log_{|\sin x|}(|\cos x|) + \log_{|\cos x|}(|\sin x|) = 2$ (a) $\frac{7\pi}{4}$ (b) $\frac{11\pi}{4}$ (c) $\frac{3\pi}{4}$ (d) $\frac{3\pi}{2}$ **30.** Range of $f(x) = \sin^6 x + \cos^6 x$ is : (a) $\left|\frac{1}{4}, 1\right|$ (b) $\left[\frac{1}{4}, \frac{3}{4}\right]$ (c) $\left[\frac{3}{4}, 1\right]$ (d) [1, 2] **31.** If $y = \frac{2\sin\alpha}{1+\cos\alpha+\sin\alpha}$, then $\frac{1-\cos\alpha+\sin\alpha}{1+\sin\alpha}$ is equal to : (a) $\frac{1}{x}$ (b) y (c) 1 - y(d) 1 + y**32.** If $\frac{\tan^3 A}{1 + \tan^2 A} + \frac{\cot^3 A}{1 + \cot^2 A} = p \sec A \csc A + q \sin A \cos A$, then : (a) p = 2, q = 1 (b) p = 1, q = 2 (c) p = 1, q = -2 (d) p = 2, q = -1**33.** If θ lies in the second quadrant. Then the value of $\sqrt{\frac{1 - \sin \theta}{1 + \sin \theta}} + \sqrt{\frac{1 + \sin \theta}{1 - \sin \theta}}$ is equal to : (b) $-2 \sec \theta$ (a) $2 \sec \theta$ (c) $2 \cos \theta$ (d) 2 **34.** If $y = (\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2$, then minimum value of y is : (a) 7 (b) 8 (c) 9 (d) none of these **35.** If $\log_3 \sin x - \log_3 \cos x - \log_3 (1 - \tan x) - \log_3 (1 + \tan x) = -1$, then $\tan 2x$ is equal to (wherever defined) (b) $\frac{3}{2}$ (c) $\frac{2}{3}$ (a) -2 (d) 6

(a) 2

(a) 14

(c) 16

(a) 1

(a) 81

(a) 1

36. If $\sin \theta + \csc \theta = 2$, then the value of $\sin^8 \theta + \csc^8 \theta$ is equal to : (c) 2⁸ (b) 2⁴ (d) more than 2⁸ **37.** If $\tan^3 \theta + \cot^3 \theta = 52$, then the value of $\tan^2 \theta + \cot^2 \theta$ is equal to : (b) 15 (d) 17 **38.** The maximum value of $\log_{20}(3\sin x - 4\cos x + 15)$ is equal to : (a) 1 (b) 2 (c) 3 (d) 4 **39.** If $x^2 + y^2 = 9$ and $4a^2 + 9b^2 = 16$, then maximum value of $4a^2x^2 + 9b^2y^2 - 12abxy$ is : (b) 2 (c) 3 (b) 100 (c) 121 (d) 144 **40.** If $A = \sqrt{\sin 2 - \sin \sqrt{3}}$, $B = \sqrt{\cos 2 - \cos \sqrt{3}}$, then which of the following statement is true ? (a) A and B both are real numbers and A > B(b) A and B both are real numbers and A < B(c) Exactly one of A and B is not real number (d) Both A and B are not real numbers 41. The number of real values of x such that $(2^{x} + 2^{-x} - 2\cos x)(3^{x+\pi} + 3^{-x-\pi} + 2\cos x)(5^{\pi-x} + 5^{x-\pi} - 2\cos x) = 0$ is : (b) 2 (c) 3 (d) infinite **42.** The equation $e^{\sin x} - e^{-\sin x} - 4 = 0$ has : (a) infinite number of real roots (b) no real roots (d) exactly four real roots (c) exactly one real root **43.** If $\pi < \alpha < \frac{3\pi}{2}$, then the expression $\sqrt{4\sin^4 \alpha + \sin^2 2\alpha} + 4\cos^2 \left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$ is equal to :

(a)
$$2 + 4\sin \alpha$$
 (b) $2 - 4\cos \alpha$ (c) 2 (d) $2 - 4\sin \alpha$
(e) $2 + 4\sin \alpha$ (b) $2 - 4\cos \alpha$ (c) 2 (d) $2 - 4\sin \alpha$
(e) $\frac{\pi}{12} - \sin \frac{\pi}{12} \left(\tan \frac{\pi}{12} + \cot \frac{\pi}{12} \right) =$
(a) $\frac{1}{\sqrt{2}}$ (b) $4\sqrt{2}$ (c) $\sqrt{2}$ (d) $2\sqrt{2}$

45. $tan(100^\circ) + tan(125^\circ) + tan(100^\circ) tan(125^\circ) =$ (b) $\frac{1}{2}$ (a) 0 (c) -1 (d) 1

46. If $\sin x + \sin^2 x = 1$, then $\cos^8 x + 2\cos^6 x + \cos^4 x =$ (d) $\frac{1}{2}$ (b) 1 (c) 3 (a) 2 **47.** The maximum value of $\log_5(3x + 4y)$, if $x^2 + y^2 = 25$ is :

(a) 1 (b) 2 (c) 3 (d) 4

48. The number of values of θ between $-\pi$ and $\frac{3\pi}{2}$ that satisfies the equation $5\cos 2\theta + 2\cos^2\frac{\theta}{2} + 1 = 0$ is : (d) 6 (a) 3 (c) 5 (b) 4 **49.** Given that $\sin\beta = \frac{4}{5}$, $0 < \beta < \pi$ and $\tan\beta > 0$, then $((3\sin(\alpha + \beta) - 4\cos(\alpha + \beta))\csc\alpha$ is equal to: **50.** The maximum value of $\sin\left(x + \frac{\pi}{6}\right) + \cos\left(x + \frac{\pi}{6}\right)$ for $x \in \left[0, \frac{\pi}{2}\right]$ is attained at $x = \frac{\pi}{6}$ (a) $\frac{\pi}{12}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$ (b) $\frac{\pi}{6}$ **51.** The values of 'a' for which the equation $\sin x (\sin x + \cos x) = a$ has a real solution are (a) $1 - \sqrt{2} \le a \le 1 + \sqrt{2}$ (b) $2 - \sqrt{3} \le a \le 2 + \sqrt{3}$ (d) $\frac{1-\sqrt{2}}{2} \le a \le \frac{1+\sqrt{2}}{2}$ (c) $0 \le a \le 2 + \sqrt{3}$ **52.** The value of $\cos 12^{\circ} \cos 24^{\circ} \cos 36^{\circ} \cos 48^{\circ} \cos 60^{\circ} \cos 72^{\circ} \cos 84^{\circ}$ is : (a) $\frac{1}{64}$ (b) $\frac{1}{128}$ (c) $\frac{1}{256}$ (d) $\frac{1}{512}$ **53.** The ratio of the maximum value to minimum value of $2\cos^2\theta + \cos\theta + 1$ is : (c) 4:1 (a) 32:7 (b) 32:9 (d) 2:1 **54.** If all values of $x \in (a, b)$ satisfy the inequality $\tan x \tan 3x < -1$, $x \in \left(0, \frac{\pi}{2}\right)$, then the maximum value (b - a) is : (c) $\frac{\pi}{6}$ (a) $\frac{\pi}{12}$ (b) $\frac{\pi}{3}$ (d) $\frac{\pi}{4}$ **55.** If a regular polygon of 'n' sides has circum radius = R and inradius = r; then each side of polygon is : (b) $2(R+r)\tan\left(\frac{\pi}{2n}\right)$ (a) $(R+r)\tan\left(\frac{\pi}{2n}\right)$ (d) $2(R+r)\cot\left(\frac{\pi}{2n}\right)$ (c) $(R+r)\sin\left(\frac{\pi}{2n}\right)$ **56.** The value of $\cos 12^\circ + \cos 84^\circ + \cos 156^\circ + \cos 132^\circ$ is: (b) $-\frac{1}{2}$ (a) $\frac{1}{2}$ (d) $\frac{1}{2}$ (c) 1 57. $\frac{\sin\theta}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)} + \frac{\sin(27\theta)}{\cos(81\theta)} =$

(a) $\frac{\sin(81\theta)}{2\cos(80\theta)\cos\theta}$ sin(800) (b) $\frac{3\pi \sqrt{2}}{2\cos(81\theta)\cos\theta}$ (c) $\frac{\sin(81\theta)}{\cos(80\theta)\cos\theta}$ sin(800) (d) $\cos(81\theta)\cos\theta$ **58.** The value of $\left(\sin\frac{\pi}{9}\right) \left(4 + \sec\frac{\pi}{9}\right)$ is : (b) $\sqrt{2}$ (c) 1 (a) $\frac{1}{2}$ (d) √3 **59.** If $\frac{dy}{dx} = \sin\left(\frac{x\pi}{2}\right)\cos(x\pi)$, then y is strictly increasing in : (d) $\left(\frac{1}{2}, \frac{3}{2}\right)$ (b) $\left(\frac{5}{2}, \frac{7}{2}\right)$ (a) (3, 4) (c) (2, 3) **60.** Smallest positive value of θ satisfying the equation $8 \sin \theta \cos 2\theta \sin 3\theta \cos 4\theta = \cos 6\theta$; is : (b) $\frac{\pi}{22}$ (a) $\frac{\pi}{18}$ (c) $\frac{\pi}{24}$ (d) None of these **61.** If an angle A of a triangle ABC is given by $3 \tan A + 1 = 0$, then $\sin A$ and $\cos A$ are the roots of the equation (b) $10x^2 - 2\sqrt{10}x - 3 = 0$ (a) $10x^2 - 2\sqrt{10}x + 3 = 0$ (c) $10x^2 + 2\sqrt{10}x + 3 = 0$ (d) $10x^2 + 2\sqrt{10}x - 3 = 0$ **62.** If θ is an acute angle and $\tan \theta = \frac{1}{\sqrt{7}}$, then the value of $\frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta}$ is : (d) 5/4 (c) 2 (b) 1/2 (a) 3/4 **63.** If $2\cos\theta + \sin\theta = 1$, then $7\cos\theta + 6\sin\theta$ equals (c) 2 or 4 (d) 2 or 6 (b) 2 or 3 (a) 1 or 2 **64.** If $\sin \theta + \csc \theta = 2$, then the value of $\sin^8 \theta + \csc^8 \theta$ is equal to : (c) 2⁸ (d) more than 2⁸ (b) 2⁴ (a) 2 **65.** If $\tan^3 \theta + \cot^3 \theta = 52$, then the value of $\tan^2 \theta + \cot^2 \theta$ is equal to : (d) 17 (c) 16 (b) 15 (a) 14 **66.** If *ABCD* is a cyclic quadrilateral such that $12 \tan A - 5 = 0$ and $5 \cos B + 3 = 0$ then $\tan C + \tan D$ is equal to : (d) $-\frac{21}{12}$ (c) $-\frac{11}{12}$ (b) $\frac{11}{12}$ (a) $\frac{21}{12}$ **67.** If $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$ then $\sqrt{\tan^2 \theta - \sin^2 \theta}$ is equal to : (d) $\sin\theta - \tan\theta$ (c) $\tan \theta - \sin \theta$ (b) $-\tan\theta\sin\theta$ (a) $\tan\theta\sin\theta$

68. The value of $\frac{\sin 10^\circ + \sin 20^\circ}{\cos 10^\circ + \cos 20^\circ}$ equals (d) $\sqrt{2} + 1$ (a) $2 + \sqrt{3}$ (c) $2-\sqrt{3}$ (b) $\sqrt{2} - 1$ **69.** The expression $\cos^6 \theta + \sin^6 \theta + 3\sin^2 \theta \cos^2 \theta$ simplifies to : (a) 0 (d) 3 (b) 1 (c) 2 70. $\frac{\sin x + \cos x}{\sin x - \cos x} - \frac{\sec^2 x + 2}{\tan^2 x - 1} = \text{, where } x \in \left(0, \frac{\pi}{2}\right)$ (d) $\frac{2}{1-\tan x}$ (a) $\frac{1}{\tan x + 1}$ (b) $\frac{2}{1 + \tan x}$ (c) $\frac{2}{1 + \cot x}$ **71.** If $\frac{\cot \alpha + \cot (270^\circ + \alpha)}{\cot \alpha - \cot (270^\circ + \alpha)} - 2\cos(135^\circ + \alpha)\cos(315^\circ - \alpha) = \lambda\cos 2\alpha$, where $\alpha \in (0, \frac{\pi}{2})$, then $\lambda = 0$ (a) 0 (d) 4 (c) 2 **72.** The expression $\frac{\sin \alpha + \cos \alpha}{\cos \alpha - \sin \alpha} \tan \left(\frac{\pi}{4} + \alpha \right) + 1$, $\alpha \in \left(-\frac{\pi}{4}, \frac{\pi}{4} \right)$ simplifies to : (a) $\operatorname{cosec}^2\left(\frac{\pi}{4} - \alpha\right)$ (b) $\operatorname{sec}^2\left(\frac{\pi}{4} - \alpha\right)$ (c) $\tan^2\left(\frac{\pi}{4} - \alpha\right)$ (d) $\operatorname{cot}^2\left(\frac{\pi}{4} - \alpha\right)$ **73.** The value of expression $\frac{\tan \alpha + \sin \alpha}{2\cos^2 \frac{\alpha}{2}}$ for $\alpha = \frac{\pi}{4}$ is : (a) 4 (b) 3 (c) 2 (d) 1 74. $\cos 2\alpha - \cos 3\alpha - \cos 4\alpha + \cos 5\alpha$ simplifies to : (a) $-4\sin\frac{\alpha}{2}\sin\alpha\cos\frac{7\alpha}{2}$ (b) $4\sin\frac{\alpha}{2}\sin\alpha\cos\frac{7\alpha}{2}$ (c) $-4\sin\frac{\alpha}{2}\sin\frac{7\alpha}{2}\cos\alpha$ (d) $-4\sin\alpha\cos\frac{\alpha}{2}\sin\frac{7\alpha}{2}$ **75.** If $\tan \gamma = \sec \alpha \sec \beta + \tan \alpha \tan \beta$, then the least value of $\cos 2\gamma$ is : (c) $-\frac{1}{2}$ (b) $\frac{1}{2}$ (a) -1 (d) 0 **76.** If $\operatorname{cosec} x = \frac{2}{\sqrt{3}}$, $\operatorname{cot} x = -\frac{1}{\sqrt{3}}$, $x \in [0, 2\pi]$, then $\cos x + \cos 2x + \cos 3x + \dots + \cos 100x =$ (b) $-\frac{1}{2}$ (c) $-\frac{\sqrt{3}}{2}$ (a) $\frac{1}{2}$ (d) $\frac{\sqrt{3}}{2}$ 77. The value of $\sum_{r=0}^{10} \cos^3\left(\frac{\pi r}{3}\right)$ is equal to : (a) $-\frac{7}{9}$ (b) $-\frac{9}{9}$ (c) $-\frac{3}{9}$ (d) $-\frac{1}{2}$

78. The value of the expression $\frac{1-4\sin 10^{\circ}\sin 70^{\circ}}{2\sin 10^{\circ}}$ is : (d) $\frac{\sqrt{3}}{2}$ (b) 2 (c) $\sqrt{3}$ (a) 1 **79.** If $x, y \in R$ and satisfy $(x + 5)^2 + (y - 12)^2 = 14^2$, then the minimum value of $x^2 + y^2$ is : (d) $\sqrt{2}$ (c) $\sqrt{3}$ (b) 1 **80.** If θ_1 , θ_2 and θ_3 are the three values of $\theta \in [0, 2\pi]$ for which $\tan \theta = \lambda$ then the value of $\tan \frac{\theta_1}{3} \tan \frac{\theta_2}{3} + \tan \frac{\theta_3}{3} \tan \frac{\theta_3}{3} + \tan \frac{\theta_3}{3} \tan \frac{\theta_1}{3}$ is equal to (λ is a constant) (a) -3 (b) -2 (c) 2 (d) 81. If $\tan \alpha = \frac{b}{a}$, a > b > 0 and if $0 < \alpha < \frac{\pi}{4}$, then $\sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}}$ is equal to : (d) 3 (a) $\frac{2\sin\alpha}{\sqrt{\cos 2\alpha}}$ (b) $\frac{2\cos\alpha}{\sqrt{\cos 2\alpha}}$ (c) $\frac{2\sin\alpha}{\sqrt{\sin 2\alpha}}$ (d) $\frac{2\cos\alpha}{\sqrt{\sin 2\alpha}}$ **82.** Minimum value of $3\sin\theta + 4\cos\theta$ in the interval $\left[0, \frac{\pi}{2}\right]$ is : (d) $\frac{7}{\sqrt{2}}$ (c) 4 (a) -5 (b) 3 **83.** If $f(n) = \prod_{r=1}^{n} \cos r, n \in N$, then (a) |f(n)| > |f(n+1)| (b) f(5) > 0 (c) f(4) > 0 (d) |f(n)| < |f(n+1)| **84.** If $\tan A + \sin A = p$ and $\tan A - \sin A = q$, then the value of $\frac{(p^2 - q^2)^2}{pq}$ is : (c) 18 (d) 42 (b) 22 (a) 16 **85.** Let $t_1 = (\sin \alpha)^{\cos \alpha}$, $t_2 = (\sin \alpha)^{\sin \alpha}$, $t_3 = (\cos \alpha)^{\cos \alpha}$, $t_4 = (\cos \alpha)^{\sin \alpha}$, where $\alpha \in (0, \frac{\pi}{4})$, then which of the following is correct (a) $t_3 > t_1 > t_2$ (b) $t_4 > t_2 > t_1$ (c) $t_4 > t_1 > t_2$ **86.** If $\cos A = \frac{3}{4}$, then the value of expression $32\sin \frac{A}{2}\sin \frac{5A}{2}$ is equal to : (d) $t_1 > t_3 > t_2$ (d) 4 (b) –11 (a) 11 87. If $\cos(\alpha + \beta) + \sin(\alpha - \beta) = 0$ and $\tan\beta = \frac{1}{2009}$; then $\tan 3\alpha$ is : (d) 4 (a) 2 (b) 1 (a) 2 (b) - **88.** If $2^x = 3^y = 6^{-z}$, the value of $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ is equal to : (d) 3 (c) 2 (b) 1 (a) 0

89.	Let	α, β be such that $\pi \cdot$	<α-	$\beta < 3\pi$			
	If si	$n\alpha + \sin\beta = -\frac{21}{65}a$	nd co	$\cos \alpha + \cos \beta = -\frac{27}{65}$ th	en th	the value of $\cos\left(\frac{\alpha}{2}\right)$	$\left(\frac{-\beta}{2}\right)$ is :
	(a)	$\frac{-3}{\sqrt{130}}$	(b)	$\frac{3}{\sqrt{130}}$	(c)	$\frac{6}{65}$	(d) $-\frac{6}{65}$
90.	If μ	$=\sqrt{a^2\cos^2\theta+b^2}$	sin ²	$\theta + \sqrt{a^2 \sin^2 \theta + b^2 \phi}$	cos ² () then the differe	nce between maximum
	and	minimum values o	ofμ²	is :			
	(a)	$2(a^2+b^2)$	(b)	$(a+b)^2$	(c)	$2\sqrt{a^2+b^2}$	(d) $(a-b)^2$
91.	If P	$=(\tan(3^{n+1}\theta)-\tan(3^{n+1}\theta))$	ıθ)a	nd $Q = \sum_{r=0}^{n} \frac{\sin(3^r \theta)}{\cos(3^{r+1} \theta)}$) , th })	en	та — а
	(a)	P = 2Q	(b)	P = 3Q	(c)	2P = Q	(d) $3P = Q$
92.	If 2	$70^{\circ} < \theta < 360^{\circ}$, the	n fino	$d\sqrt{2+\sqrt{2(1+\cos\theta)}}$			
	(a)	$-2\sin\left(\frac{\theta}{4}\right)$	(b)	$2\sin\left(\frac{\theta}{4}\right)$	(c)	$\pm 2\sin\frac{\theta}{4}$	(d) $2\cos\frac{\theta}{4}$
93.	If y	$=(\sin x + \cos x) +$	(sin 4	$(x + \cos 4x)^2$, then :			
	(a)	$y > 0 \forall x \in R$			(b)	$y \ge 0 \forall x \in R$	
	(c)	$y < 2 + \sqrt{2} \forall x \in I$	R		(d)	$y = 2 + \sqrt{2}$ for so	me $x \in R$
94.	If co	sx + cosy + cosz	= sin	$x + \sin y + \sin z = 0$	then	$\cos(x-y) =$	
	(a)	0	(b)	$-\frac{1}{2}$	(c)	2	(d) 1
95.	The	exact value of cos	ec10	° + cosec 50° – cosec	70° is	s :	
	(a)	4	(b)	5	(c)	6	(d) 8
96.	If 27	70°<θ<360°, the	n fin	d $\sqrt{2 + \sqrt{2(1 + \cos \theta)}}$:		
	(a)	$-2\sin\left(\frac{\theta}{4}\right)$	(Ъ)	$2\sin\left(\frac{\theta}{4}\right)$	(c)	$\pm 2\sin{\frac{\theta}{4}}$	(d) $2\cos\frac{\theta}{4}$

Compound Angles

1	2	and and		B.or				A	nsv	ver	s							1. 1	2
1.	(c)	2.	(d)	3.	(a)	4.	(c)	5.	(b)	6.	(c)	7.	(d)	8.	(d)	9.	(a)	10.	(c)
11.	(c)	12.	(Ь)	13.	(b)	14.	(d)	15.	(Ъ)	16.	(d)	17.	(c)	18.	(a)	19.	(d)	20.	(a)
21.	(c)	22.	(b)	23.	(b)	24.	(d)	25.	(c)	26.	(b)	27.	(c)	28.	(Ъ)	29.	(d)	30.	(a)
31.	(b)	32.	(c)	33.	(b)	34.	(c)	35.	(c)	36.	(a)	37.	(a)	38.	(a)	39.	(d)	40.	(d)
41.	(b)	42.	(b)	43.	(c)	44.	(d)	45.	(d)	46.	(b)	47.	(Ъ)	48.	(c)	49.	(d)	50.	(a)
51.	(d)	52.	(b)	53.	(a)	54.	(a)	55.	(b)	56.	(b)	57.	(Ъ)	58.	(d)	59.	(Ъ)	60.	(a)
61.	(d)	62.	(a)	63.	(d)	64.	(a)	65.	(a)	66.	(b)	67.	(Ъ)	68.	(c)	69.	(b)	70.	(Ъ)
71.	(c)	72.	(a)	73.	(d)	74.	(a)	75.	(d)	76.	(b)	77.	(d)	78.	(a)	79.	(Ъ)	80.	(a)
81.	(b)	82.	(Ъ)	83.	(a)	84.	(a)	85.	(b)	86.	(a)	87.	(Ъ)	88.	(a)	89.	(a)	90.	(d)
91.	(a)	92.	(b)	93.	(c)	94.	(b)	95.	(c)	96.	(b)								

Exercise-2 : One or More than One Answer is/are Correct 1. $\cot 12^\circ \cdot \cot 24^\circ \cdot \cot 28^\circ \cdot \cot 32^\circ \cdot \cot 48^\circ \cdot \cot 88^\circ = \dots$ (a) tan 45° (b) 2 (d) tan 15° · tan 45° · tan 75° (c) 2 tan 15° · tan 45° · tan 75° 2. If the equation $\cot^4 x - 2 \csc^2 x + a^2 = 0$ has at least one solution then possible integral values of a can be : (d) 2 (a) -1 (b) 0 (c) 1 3. Which of the following is/are true ? (d) $\cos(\cos 1) > \frac{1}{\sqrt{2}}$ (a) $\tan 1 > \tan^{-1} 1$ (b) $\sin 1 > \cos 1$ (c) $\tan 1 < \sin 1$ 4. Which of the following is/are +ve? (a) $\log_{sin1} \tan 1$ (b) $\log_{\cos 1} (1 + \tan 3)$ (c) $\log_{\log_{10} 5}(\cos\theta + \sec\theta)$ (d) log_{tan15°}(2sin18°) **5.** If $\sin \alpha + \cos \alpha = \frac{\sqrt{3} + 1}{2}$, $0 < \alpha < 2\pi$, then possible values $\tan \frac{\alpha}{2}$ can take is/are : (b) $\frac{1}{\sqrt{3}}$ (a) $2-\sqrt{3}$ (c) 1 (d) $\sqrt{3}$ **6.** If $3\sin\beta = \sin(2\alpha + \beta)$, then : (a) $(\cot \alpha + \cot(\alpha + \beta))(\cot \beta - 3\cot(2\alpha + \beta)) = 6$ (b) $\sin\beta = \cos(\alpha + \beta)\sin\alpha$ (c) $\tan(\alpha + \beta) = 2 \tan \alpha$ (d) $2\sin\beta = \sin(\alpha + \beta)\cos\alpha$ 7. If $sin(x + 20^\circ) = 2 sin x cos 40^\circ$ where $x \in (0, 90^\circ)$, then which of the following hold good ? (a) $\sec \frac{x}{2} = \sqrt{6} - \sqrt{2}$ (b) $\cot \frac{x}{2} = 2 + \sqrt{3}$ (c) $\tan 4x = \sqrt{3}$ (d) $\operatorname{cosec} 4x = 2$ 8. If $2(\cos(x-y) + \cos(y-z) + \cos(z-x)) = -3$, then : (a) $\cos x \cos y \cos z = 1$ (b) $\cos x + \cos y + \cos z = 0$ (c) $\sin x + \sin y + \sin z = 1$ (d) $\cos 3x + \cos 3y + \cos 3z = 12\cos x \cos y \cos z$ **9.** If $0 < x < \frac{\pi}{2}$ and $\sin^n x + \cos^n x \ge 1$, then 'n' may belong to interval : (a) [1, 2) (b) [3,4] (c) $(-\infty, 2]$ (d) [-1,1] **10.** If $x = \sin(\alpha - \beta) \cdot \sin(\gamma - \delta)$, $y = \sin(\beta - \gamma) \cdot \sin(\alpha - \delta)$, $z = \sin(\gamma - \alpha) \cdot \sin(\beta - \delta)$, then : (b) $x^3 + y^3 + z^3 = 3xyz$ (a) x + y + z = 0(d) $x^3 + y^3 - z^3 = 3xyz$ (c) x + y - z = 0

11. If $X = x \cos \theta - y \sin \theta$, $Y = x \sin \theta + y \cos \theta$ and $X^2 + 4XY + Y^2 = Ax^2 + By^2$, $0 \le \theta \le \pi/2$, then : (where A and B are constants) (a) $\theta = \frac{\pi}{6}$ (b) $\theta = \frac{\pi}{4}$ (c) A = 3(d) B = -1**12.** If $2a = 2 \tan 10^\circ + \tan 50^\circ$; $2b = \tan 20^\circ + \tan 50^\circ$ $2c = 2\tan 10^\circ + \tan 70^\circ$; $2d = \tan 20^\circ + \tan 70^\circ$ Then which of the following is/are correct ? (d) a < b < c < d (a) a+d=b+c(c) a > b < c > d(b) a + b = c13. Which of the following real numbers when simplified are neither terminating nor repeating decimal ? (c) $\log_3 5 \cdot \log_5 6$ (d) $8^{-(\log_{27} 3)}$ (a) $\sin 75^\circ \cdot \cos 75^\circ$ (b) $\log_2 28$ **14.** If $\alpha = \sin x \cos^3 x$ and $\beta = \cos x \sin^3 x$, then : (b) $\alpha - \beta < 0$; for all $x \ln\left(0, \frac{\pi}{4}\right)$ (a) $\alpha - \beta > 0$; for all $x \ln \left(0, \frac{\pi}{4} \right)$ (d) $\alpha + \beta < 0$; for all $x \ln \left(0, \frac{\pi}{2} \right)$ (c) $\alpha + \beta > 0$; for all $x \ln \left(0, \frac{\pi}{2} \right)$ **15.** If $\frac{\pi}{2} < \theta < \pi$, then possible answers of $\sqrt{2 + \sqrt{2 + 2\cos 4\theta}}$ is/are : (b) $2\sin\theta$ (c) $-2\sin\theta$ (d) $-2\cos\theta$ (a) $2\cos\theta$ **16.** If $\cot^3 \alpha + \cot^2 \alpha + \cot \alpha = 1$ then which of the following is/are correct: (b) $\cos 2\alpha \cdot \tan \alpha = -1$ (a) $\cos 2\alpha \tan \alpha = 1$ (d) $\cos 2\alpha - \tan 2\alpha = 1$ (c) $\cos 2\alpha - \tan 2\alpha = -1$ 17. All values of $x \in \left(0, \frac{\pi}{2}\right)$ such that $\frac{\sqrt{3}-1}{\sin x} + \frac{\sqrt{3}+1}{\cos x} = 4\sqrt{2}$ are : (c) $\frac{11\pi}{36}$ (d) $\frac{3\pi}{10}$ (b) $\frac{\pi}{12}$ (a) $\frac{\pi}{15}$ **18.** If $\alpha > \frac{1}{\sin^6 x + \cos^6 x} \forall x \in R$, then α can be : (c) 5 (d) 6 (b) 4 (a) 3 **19.** If $x \in (0, \frac{\pi}{2})$ and $\sin x = \frac{3}{\sqrt{10}}$; Let $k = \log_{10} \sin x + \log_{10} \cos x + 2\log_{10} \cot x + \log_{10} \tan x$ then the value of k satisfies (d) $k^2 - 1 = 0$ (c) k-1=0(b) k+1=0(a) k = 0**20.** If A, B, C are angles of a triangle ABC and $\tan A \tan C = 3$; $\tan B \tan C = 6$ then which is(are) correct : (b) $\tan A \tan B = 2$ (c) $\frac{\tan A}{\tan C} = 3$ (d) $\tan B = 2 \tan A$ (a) $A = \frac{\pi}{A}$

21	The value of $\frac{\sin x - \cos^2 x}{\sin^3 x}$	$\frac{1}{2}$ is equal to :	919			191
	(a) $\operatorname{cosec}^2 x (1 - \cot x)$)	(b)	$1 - \cot x + \cot^2 x$	$-\cot^3 x$	
	(c) $\csc^2 x - \cot x - \frac{1}{2}$	$\cot^3 x$	(d)	$\frac{1-\cot x}{\sin^2 x}$		
22.	If $f(x) = \sin^2 x + \sin^2$	$\left(x+\frac{2\pi}{3}\right)+\sin^2\left(x+\frac{4\pi}{3}\right)$)ther	1:		
	(a) $f\left(\frac{\pi}{15}\right) = \frac{3}{2}$	(b) $f\left(\frac{15}{\pi}\right) = \frac{2}{3}$	(c)	$f\left(\frac{\pi}{10}\right) = \frac{3}{2}$	(d) $f\left(\frac{10}{\pi}\right)$	$=\frac{2}{3}$
23.	The range of $y = \frac{\sin 4}{\sin 4}$	$\frac{1}{x-\sin 2x}$ satisfies $\frac{1}{x+\sin 2x}$				
	(a) $y \in \left(-\infty, \frac{1}{3}\right)$	(b) $y \in \left(\frac{1}{3}, 1\right)$	(c)	$y \in (1,3)$	(d) $y \in (3,$	∞)
24.	If $\sqrt{2}\cos A = \cos B + \cos B$	$\cos^3 B$ and $\sqrt{2} \sin A = \sin A$	B – si	n ³ <i>B</i> , then the pos	sible value o	of $\sin(A - B)$
	is/are					
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c)	$-\frac{1}{2}$	(d) $-\frac{1}{3}$	
25.	If $\alpha > \frac{1}{\sin^6 x + \cos^6 x}$	$\forall x \in R$, then α can be				
	(a) 3	(b) 4	(c)	5	(d) 6	
26.	If $\cot^3 \alpha + \cot^2 \alpha + \cot^2 \alpha$	t $\alpha = 1$ then which of the	e follo	wing is/are corre	ct	
	(a) $\cos 2\alpha \tan \alpha = 1$	25	(b)	$\cos 2\alpha \cdot \tan \alpha = -$	1	
	(c) $\cos 2\alpha - \tan 2\alpha = -$	-1	(d)	$\cos 2\alpha - \tan 2\alpha =$	- 1	

2	1		M. Contactored		Ans	wers	8				17
1.	(a, d)	2.	(a, b, c)	3.	(a, b, d)	4.	(b, d)	5.	(a, b)	6.	(a, b, c, d)
7.	(a, b)	8.	(b, d)	9.	(a, c, d)	10.	(a, b)	11.	(b, c, d)	12.	(a, b, d)
13.	(b, c)	14.	(a, c)	15.	(b, d)	16.	(b, d)	17.	(b, c)	18.	(b, d)
19.	(b, d)	20.	(a, b, d)	21.	(a, b, c, d)	22.	(a, c)	23.	(a, d)	24.	(b, d)
25.	(c, d)	26.	(b, d)								

Paragraph for Question Nos. 7 to 8

Consider a right angle triangle ABC right angle at B such that $AC = \sqrt{8 + 4\sqrt{3}}$ and AB = 1. A line through vertex A meet BC at D such that AB = BD. An arc DE of radius AD is drawn from vertex A to meet AC at E and another arc DF of radius CD is drawn from vertex C to meet AC at F. On the basis of above information, answer the following questions.

- 7. $\sqrt{\tan A + \cot C}$ is equal to :
 - (a) $\sqrt{3}$ (b) 1 (c) $2+\sqrt{3}$ (d) $\sqrt{3}+1$

8.	$\log_{AE}\left(\frac{AC}{CD}\right)$ is equal to):	rt.		
	(a) $\sqrt{2}$	(b) 1	(c)	0	(d) -1
		Paragraph for Que	estio	n Nos. 9 to 10	
	Consider a triangle A	ABC such that $\cot A + \cot A$	B + 0	$\cot C = \cot \theta$. Now	answer the following :
9.	The possible value of	θis:			
10	(a) 60°	(b) 25°	(c)	35°	(d) 45°
10.	$\sin(A - \theta) \sin(B - \theta) s$ (a) $\tan^3 \theta$	in $(C - \theta) =$: (b) $\cot^3 \theta$	(c)	$\sin^3 \theta$	(d) $\cos^3 \theta$
		Paragraph for Que	stio	n Nos. 11 to 12	
	Consider the function	$f(x) = \frac{\sqrt{1 + \cos x} + \sqrt{1 - x}}{\sqrt{1 + \cos x} - \sqrt{1 - x}}$	$\cos x$ $\cos x$	then	
11.	If $x \in (\pi, 2\pi)$ then $f(x)$) is :			
	(a) $\cot\left(\frac{\pi}{2}+\frac{x}{2}\right)$	(b) $\tan\left(\frac{\pi}{4}+\frac{x}{2}\right)$	(c)	$\cot\left(\frac{\pi}{4}-\frac{x}{2}\right)$	(d) $\tan\left(\frac{\pi}{4}-\frac{x}{2}\right)$
12.	If the value of $f\left(\frac{\pi}{3}\right) =$	$a + b\sqrt{c}$ where $a, b, c \in N$	l the	the value of $a + l$	b + c is :
	(a) 4	(b) 5	(c)	6	(d) 7

1								A	nsv	vers	S						- met	1. · ·	5
1.	(b)	2.	(b)	3.	(a)	4.	(a)	5.	(b)	6.	(c)	7.	(d)	8.	(h)	0	(h)	10	(c)
11.	(d)	12.	(c)											1			(0)	10.	

Section 2017 Exercise-4 : Matching Type Problems

л	٠	

	Column-I	/	Column-ll	
(A)	If $(1 + \tan 5^\circ)(1 + \tan 10^\circ)(1 + \tan 45^\circ) = 2^{k+1}$ then 'k' equals	(P)	0	
(B)	Sum of positive integral values of 'a' for which $a^2 - 6\sin x - 5a \le 0 \forall x \in R$ is	(Q)	2	
(C)	The minimum value of $\frac{\left(a+\frac{1}{a}\right)^4 - \left(a^4+\frac{1}{a^4}\right) - 2}{\left(a+\frac{1}{a}\right)^2 + a^2 + \frac{1}{a^2}}$ is	(R)	5	
(D)	Number of real roots of the equation $\sum_{k=1}^{3} (x-k)^2 = 0$ is	(S)	4	
		(T)	5	

2.

/	Column-l		Column-II
(A)	Maximum value of $y = \frac{1 - \tan^2(\pi/4 - x)}{1 + \tan^2(\pi/4 - x)}$	(P)	1
(B)	Minimum value of $\log_3\left(\frac{5\sin x - 12\cos x + 26}{13}\right)$	(Q)	0
(C)	Minimum value of $y = -2\sin^2 x + \cos x + 3$	(R)	<u>7</u> 8
(D)	Maximum value of $y = 4\sin^2 \theta + 4\sin \theta \cos \theta + \cos^2 \theta$	(S)	5
		(T)	6

3.

	Column-l		Column-ll
(A)	The value of $\frac{\cos 68^{\circ}}{\sin 56^{\circ} \sin 34^{\circ} \tan 22^{\circ}}$ equals to	(P)	16
(B)	The value of $(\cos 65^\circ + \sqrt{3} \sin 5^\circ + \cos 5^\circ)^2 = \lambda \cos^2 25^\circ$; then value of λ be	(Q)	3

Advanced Problems in Mathematics for JEE

(C)	If $\cos A = \frac{3}{4}$; then the value of $\frac{32}{11} \sin \frac{A}{2} \sin \frac{5A}{2}$ is equal to	(R)	4
(D)	If $7 \log_a \frac{16}{15} + 5 \log_a \frac{25}{24} + 3 \log_a \frac{81}{80} = 8$ then the value of a^{16}	(S)	2
	equals to	(T)	1

	Column-i		Column-ll
(A)	If $\sin x + \cos x = \frac{1}{5}$; then $ 12 \tan x $ is equal to	(P)	2
(B)	Number of values of θ lying in $(-2\pi, \pi)$ and satisfying $\cot \frac{\theta}{2} = (1 + \cot \theta)$ is	(Q)	6
(C)	If $2 - \sin^4 x + 8\sin^2 x = \alpha$ has solution, then α can be	(R)	9
(D)	Number of integral values of x satisfying $\log_4(2x^2 + 5x + 27) - \log_2(2x - 1) \ge 0$	(S)	14
		(T)	16

5. Match the function given in **Column-I** to the number of integers in its range given in **Column-II**.

		Column-I		Column-ll			
	(A)	$f(x) = 2\cos^2 x + \sin x - 8$	(P)	5			
	(B)	$f(x) = \sin^2 x + 3\cos^2 x + 5$	(Q)	. 4			
	(C)	$f(x) = 4\sin x \cos x - \sin^2 x + 3\cos^2 x$	(R)	3			
	(D)	$f(x) = \cos(\sin x) + \sin(\sin x)$	(S)	2			
2		Answers		1 de la compañía de la			
1.	$A \rightarrow S;$; $B \rightarrow R$; $C \rightarrow Q$; $D \rightarrow P$					
2.	$A \rightarrow P;$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$					
3.	A \rightarrow S; B \rightarrow Q; C \rightarrow T; D \rightarrow R						
4.	$A \rightarrow R$, T; $B \rightarrow P$; $C \rightarrow P, Q, R$; $D \rightarrow Q$					
5.	$A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$					

Exercise-5 : Subjective Type Problems

- **1.** Let $P = \frac{\sin 80^\circ \sin 65^\circ \sin 35^\circ}{\sin 20^\circ + \sin 50^\circ + \sin 110^\circ}$, then the value of 24*P* is :
- 2. The value of expression $(1 \cot 23^\circ)(1 \cot 22^\circ)$ is equal to ;
- **3.** If tan A and tan B are the roots of the quadratic equation, $4x^2 7x + 1 = 0$ then evaluate $4\sin^2(A+B) - 7\sin(A+B) \cdot \cos(A+B) + \cos^2(A+B)$.
- **4.** $A_1 A_2 A_3 \dots A_{18}$ is a regular 18 sided polygon. *B* is an external point such that $A_1 A_2 B$ is an equilateral triangle. If $A_{18} A_1$ and $A_1 B$ are adjacent sides of a regular *n* sided polygon, then n =
- 5. If $10\sin^4 \alpha + 15\cos^4 \alpha = 6$ and the value of $9\csc^4 \alpha + \beta \sec^4 \alpha$ is S, then find the value of $\frac{S}{25}$
- 6. The value of $\left(1 + \tan\frac{3\pi}{8}\tan\frac{\pi}{8}\right) + \left(1 + \tan\frac{5\pi}{8}\tan\frac{3\pi}{8}\right) + \left(1 + \tan\frac{7\pi}{8}\tan\frac{5\pi}{8}\right) + \left(1 + \tan\frac{9\pi}{8}\tan\frac{7\pi}{8}\right)$ 7. If $\alpha = \frac{\pi}{7}$ then find the value of $\left(\frac{1}{\cos \alpha} + \frac{2\cos \alpha}{\cos 2\alpha}\right)$.

8. Given that for $a, b, c, d \in R$, if $a \sec(200^\circ) - c \tan(200^\circ) = d$ and $b \sec(200^\circ) + d \tan(200^\circ) = c$, then find the value of $\left(\frac{a^2 + b^2 + c^2 + d^2}{bd - ac}\right) \sin 20^\circ$.

- **9.** The expression $2\cos\frac{\pi}{17} \cdot \cos\frac{9\pi}{17} + \cos\frac{7\pi}{17} + \cos\frac{9\pi}{17}$ simplifies to an integer *P*. Find the value of *P*.
- **10.** If the expression $\frac{\sin\theta\sin2\theta + \sin3\theta\sin6\theta + \sin4\theta\sin13\theta}{\sin\theta\cos2\theta + \sin3\theta\cos6\theta + \sin4\theta\cos13\theta} = \tan k\theta$, where $k \in N$. Find the value of k.

11. Let $a = \sin 10^\circ$, $b = \sin 50^\circ$, $c = \sin 70^\circ$, then $8abc\left(\frac{a+b}{c}\right)\left(\frac{1}{a} + \frac{1}{b} - \frac{1}{c}\right)$ is equal to

- **12.** If $\sin^3 \theta + \sin^3 \left(\theta + \frac{2\pi}{3} \right) + \sin^3 \left(\theta + \frac{4\pi}{3} \right) = a \sin b\theta$. Find the value of $\left| \frac{b}{a} \right|$. 13. If $\sum_{r=1}^{n} \left(\frac{\tan 2^{r-1}}{\cos 2^r} \right) = \tan p^n - \tan q$, then find the value of (p+q).
- **14.** If $x = \sec \theta \tan \theta$ and $y = \csc \theta + \cot \theta$, then y x xy =

15. If $\cos 18^\circ - \sin 18^\circ = \sqrt{n} \sin 27^\circ$, then n =

- **16.** The value of $3(\sin 1 \cos 1)^4 + 6(\sin 1 + \cos 1)^2 + 4(\sin^6 1 + \cos^6 1)$ is equal to
- $3^{\sin 2x + 2\cos^2 x} + 3^{1 \sin 2x + 2\sin^2 x} = 28$ equation satisfy the then 17. If $x = \alpha$ $(\sin 2\alpha - \cos 2\alpha)^2 + 8\sin 4\alpha$ is equal to :
- **18.** The least value of the expression $(\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 \forall \theta \in R$ is
- **19.** If $\tan 20^\circ + \tan 40^\circ + \tan 80^\circ \tan 60^\circ = \lambda \sin 40^\circ$, then λ is equal to

- 20. If K° lies between 360° and 540° and K° satisfies the equation $1 + \cos 10x \cos 6x = 2\cos^2 8x + \sin^2 8x$, then $\frac{K}{10} =$ **21.** If $\cos 20^\circ + 2\sin^2 55^\circ = 1 + \sqrt{2} \sin K^\circ$, $K \in (0, 90)$, then K =22. The exact value of cosec 10°+ cosec 50°- cosec 70° is : **23.** Let α be the smallest integral value of x, x > 0 such that $\tan 19x = \frac{\cos 96^\circ + \sin 96^\circ}{\cos 96^\circ - \sin 96^\circ}$. The last digit of a is : **24.** Find the value of the expression $\frac{\sin 20^{\circ}(4\cos 20^{\circ}+1)}{\cos 20^{\circ}\cos 30^{\circ}}$ **25.** If the value of $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} + \cos \frac{7\pi}{7} = -\frac{l}{2}$. Find the value of *l*. **26.** If $\cos A = \frac{3}{4}$ and $k \sin\left(\frac{A}{2}\right) \sin\left(\frac{5A}{2}\right) = \frac{11}{8}$. Find k. **27.** Find the least value of the expression $3\sin^2 x + 4\cos^2 x$. **28.** If $\tan \alpha$ and $\tan \beta$ are the roots of equation $x^2 - 12x - 3 = 0$, then the value of $\sin^2(\alpha + \beta) + 2\sin(\alpha + \beta)\cos(\alpha + \beta) + 5\cos^2(\alpha + \beta)$ is : **29.** The value of $\frac{\cos 24^\circ}{2 \tan 33^\circ \sin^2 57^\circ} + \frac{\sin 162^\circ}{\sin 18^\circ - \cos 18^\circ \tan 9^\circ} + \cos 162^\circ$ is equal to : **30.** Find the value of $\tan \theta (1 + \sec 2\theta)(1 + \sec 4\theta)(1 + \sec 8\theta)$, when $\theta = \frac{\pi}{32}$.
- **31.** If λ be the minimum value of $y = (\sin x + \csc x)^2 + (\cos x + \sec x)^2 + (\tan x + \cot x)^2$ where $x \in R$. Find $\lambda - 6$.

1			6			Ansv	vers					K	1
1.	6	2.	2	3.	1	4.	9	5.	3	6.	0	7.	4
8.	2	9.	0	10.	9	11.	6	12.	4	13.	3	14.	1
15.	2	16.	13	17.	1	18.	9	19.	8	20.	45	21.	65
22.	6	23.	9	24.	2	25.	3	26.	4	27.	3	28.	2
29.	2	30.	1	31.	7		_						

TRIGONOMETRIC EQUATIONS

Exercise-1 : Single Choice Problems

1. Let x and y be 2 real numbers which satisfy the equations $(\tan^2 x - \sec^2 y) = \frac{5a}{6} - 3$ and $(-\sec^2 x + \tan^2 y) = a^2$, then the product of all possible value's of a can be equal to : (d) $\frac{-3}{2}$ (b) $\frac{-2}{3}$ (c) -1 (a) 0 **2.** The general solution of the equation $\tan^2(x + y) + \cot^2(x + y) = 1 - 2x - x^2$ lie on the line is : (d) y = -2(c) y = -1(b) x = -2(a) x = -13. General solution of the equation $\sin x + \cos x = \min_{a \in R} \{1, a^2 - 4a + 6\}$ is : (b) $2n\pi + (-1)^n \frac{\pi}{4}$ (d) $n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$ (a) $\frac{n\pi}{2} + (-1)^n \frac{\pi}{4}$ (c) $n\pi + (-1)^{n+1} \frac{\pi}{A}$ (where $n \in I, I$ represent set of integers) 4. The number of solutions of the equation $\left(2\sin\left(\frac{\sin x}{2}\right)\right)\left(\cos\left(\frac{\sin x}{2}\right)\right)\left(\sin\left(2\tan\frac{x}{2}\cos^2\frac{x}{2}\right)-3\right)+2=0\text{ in }[0,2\pi]\text{ is }:$ (d) 4 (c) 2 (b) 1 (a) 0 **5.** Number of solution of tan(2x) = tan(6x) in (0, 3π) is : (d) None of these (c) 3 (b) 5 (a) 4 6. The number of values of x in the interval [0, 5π] satisfying the equation $3\sin^2 x - 7\sin x + 2 = 0$ is :

(a) 0 (b) 2 (c) 6 (d) 8

7	. The time	number of differe e satisfying the cor	nt va nditio	lues of θ satisfying the formula of $\theta < 360^{\circ}$ is :	ne eq	uation $\cos\theta + \cos\theta$	$2\theta = -1$, and at the same
	(a)	1	(b)	2	(c)	3	(d) 4
8	. The	total number of so	lutio	ns of the equation m	ax (si	$nx,\cos x)=\frac{1}{2}\mathrm{for}.$	$x \in (-2\pi, 5\pi)$ is equal to:
	(a)	3	(b)	6	(c)	7	(d) 8
9	. The	general value of x	c sati	sfying the equation			
	2co	$t^2 x + 2\sqrt{3} \cot x +$	4 cos	$\sec x + 8 = 0$ is : (whe	ere n	$\in I$)	
	(a)	$n\pi - \frac{\pi}{6}$	(b)	$n\pi + \frac{\pi}{2}$	(c)	$2n\pi - \frac{\pi}{2}$	(d) $2n\pi + \frac{\pi}{2}$
10	The	general solution	f the	6	2.0	6	6
	(-)	ηπ	or the	equation $\sin^2 x + \cos^2 x$	os" 3.	x = 1 is equal to :	π
	(a)	$x = \frac{1}{2}$	(b)	$x = n\pi + \frac{\pi}{4}$	(c)	$x = \frac{n\pi}{4}$	(d) $x = n\pi + \frac{\pi}{2}$
	(wh	ere $n \in I$)					
11.	Valu	les of x between 0) and	2π which satisfy the	e equ	ation sin $x\sqrt{8\cos^2}$	$\frac{1}{x} = 1$ are in A.P. whose
	com	mon difference is	:	•		,	
	(a)	$\frac{\pi}{4}$	(b)	$\frac{\pi}{2}$	(c)	<u>π</u>	(d) $\frac{2\pi}{2\pi}$
		4	5	3		2	3
12.	Nun	nber of solutions o	of $\sum_{r=1}^{r=1}$	$\cos rx = 5$ in the inter-	rval [0, 4π] is :	
	(a)	0	(b)	2	(c)	3	(d) 7
13.	Gen	eral solution of 4 s	ג 2 in	$x + \tan^2 x + \csc^2 x$	+ cot	$x^2 x - 6 = 0$ is :	
	(a)	$n\pi\pm\frac{\pi}{4}$	(b)	$2n\pi\pm\frac{\pi}{4}$	(c)	$n\pi + \frac{\pi}{2}$	(d) $n\pi - \frac{\pi}{2}$
	ſwh	$re n \in I$		4		3	6
14.	Sma	llest positive r sat	isfvir	10° the equation \cos^3	324	cos ³ Ex. 0 - 3	
	(a)	15°	(b)	18°	(c)	$22 5^{\circ}$	$4x \cdot \cos^3 x$ is :
15.	The	general solution o	f the	equation $\sin^{100} x$ –	cos ¹⁰	x = 1 is (where	(d) 30°
	(\cdot)	ο	(L)			$\pi = 1$ is (where	$n \in I$:
	(a)	$\frac{2n\pi + -}{2}$	(0)	$\frac{n\pi + -}{2}$	(c)	$2n\pi - \frac{\pi}{2}$	(d) <i>n</i> π
16.	Num	ber of solution(s)	of eq	η uation $\sin \theta = \sec^2 \theta$	40 in	[0, π] is/are:	
	(a)	0	(b)	1	(c)	2	(d) 2
17.	The	number of solution	ns of	the equation $4\sin^2$	x + ta	$an^2 x + \cot^2 x + c$	(0) = 5
	(a)	1	(b)	2	(c)	3	$(d) A = 0 \text{III} \left[0, 2\pi \right]$
18.	Theı	number of solution	s of t	he equation $\sin^4 \theta$ –	2 sin	$\theta^2 \theta - 1 = 0$ which 1	
	(a)	0	(Ъ)	2	(c)	4	(d) 8

19. The smallest positive value of p for which the equation $\cos(p \sin x) = \sin(p \cos x)$ has solution in $0 \le x \le 2\pi$ is : (a) $\frac{\pi}{\sqrt{2}}$ (d) $\frac{3\pi}{2\sqrt{2}}$ (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{2\sqrt{2}}$ **20.** The total number of ordered pairs (x, y) satisfying |x| + |y| = 2 and $sin\left(\frac{\pi x^2}{3}\right) = 1$ is : (a) 2 (b) 4 (d) 8 (c) 6 **21.** The complete set of values of $x, x \in \left(-\frac{\pi}{2}, \pi\right)$ satisfying the inequality $\cos 2x > |\sin x|$ is : (a) $\left(-\frac{\pi}{6},\frac{\pi}{6}\right)$ (b) $\left(-\frac{\pi}{2},\frac{\pi}{6}\right)\cup\left(\frac{\pi}{6},\frac{5\pi}{6}\right)$ (c) $\left(-\frac{\pi}{2},-\frac{\pi}{6}\right)\cup\left(\frac{5\pi}{6},\pi\right)$ (d) $\left(-\frac{\pi}{6},\frac{\pi}{6}\right)\cup\left(\frac{5\pi}{6},\pi\right)$ **22.** The total number of solution of the equation $\sin^4 x + \cos^4 x = \sin x \cos x$ in $[0, 2\pi]$ is : (a) 2 (b) 4 (c) 6 (d) 8 **23.** Number of solution of the equation $\sin \frac{5x}{2} - \sin \frac{x}{2} = 2$ in the interval [0, 2π], is : (a) 1 (b) 2 (c) 0 **24.** In the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. The equation $\log_{\sin\theta} \cos 2\theta = 2$ has (d) Infinite (a) No solution (b) One solution (c) Two solution (d) Infinite solution **25.** If α and β are 2 distinct roots of equation $a\cos\theta + b\sin\theta = C$ then $\cos(\alpha + \beta) = C$ (a) $\frac{2ab}{a^2 + b^2}$ (b) $\frac{2ab}{a^2 - b^2}$ (c) $\frac{a^2 + b^2}{a^2 - b^2}$ (d) $\frac{a^2 - b^2}{a^2 + b^2}$

2	1							A	nsv	vers	S								1
1.	(c)	2.	(a)	3.	(d)	4.	(a)	5.	(b)	6.	(c)	7.	(d)	8.	(c)	9.	(c)	10.	(c)
11.	(a)	12.	(c)	13.	(a)	14.	(b)	15.	0	16.	(b)	17.	(d)	18.	(a)	19.	(c)	20.	(b)
21.	(d)	22.	(a	23.	(c)	24.	(b)	25.	(d)										

(d) Number of principle solutions of $f(\theta) = 0$ is 8

9. If $\frac{\sin^2 2x + 4\sin^4 x - 4\sin^2 x \cdot \cos^2 x}{4 - \sin^2 2x - 4\sin^2 x} = \frac{1}{9}$ and $0 < x < \pi$. Then the value of x is : (a) $\frac{\pi}{3}$ (d) $\frac{5\pi}{6}$ (b) $\frac{\pi}{6}$ (c) $\frac{2\pi}{3}$ **10.** The possible value(s) of ' θ ' satisfying the equation $\sin^2\theta\tan\theta + \cos^2\theta\cot\theta - \sin2\theta = 1 + \tan\theta + \cot\theta$ where $\theta \in [0, \pi]$ is/are : (a) $\frac{\pi}{4}$ (c) $\frac{7\pi}{12}$ (b) π (d) None of these **11.** If $\sin \theta + \sqrt{3} \cos \theta = 6x - x^2 - 11$, $0 \le \theta \le 4\pi$, $x \in R$ holds for (a) no values of x and θ (b) one value of x and two values of θ (c) two values of x and two values of θ (d) two pairs of values of (x, θ)

1.			3		Ans	ver	S			-Land	17
1.	(a, b, c, d)	2.	(a, c)	3.	(a, b, c, d)	4.	(b, c, d)	5.	(a, c, d)	6.	(a, b, c, d)
7.	(a, b, c)	8.	(b, c, d)	9.	(b, d)	10.	(c)	11.	(b, d)		

	Answers	11
1. (b) 2. (a) 3. (c)		

Exercise-4 : Matching Type Problems

1.

	Column-I		Column-ll
(A)	If $\sin x + \cos x = \frac{1}{5}$; then $ 12 \tan x $ is equal to	(P)	2
(B)	Number of values of θ lying in $(-2\pi, \pi)$ and satisfying $\cot \frac{\theta}{2} = (1 + \cot \theta)$ is	(Q)	6
(C)	If $2 - \sin^4 x + 8 \sin^2 x = \alpha$ has solution, then α can be	(R)	9
(D)	Number of integral values of x satisfying $\log_4(2x^2 + 5x + 27) - \log_2(2x - 1) \ge 0$	(S)	14
		(T)	16

2.

	· Column-I		Column-ll
(A)	If $x, y \in [0, 2\pi]$, then total number of ordered pair (x, y) satisfying sin $x \cos y = 1$ is	(P)	4
(B)	If $f(x) = \sin x - \cos x - kx + b$ decreases for all real values of x, then $2\sqrt{2}k$ may be	(Q)	0
(C)	The number of solution of the equation $\sin^{-1}(x^2-1) + \cos^{-1}(2x^2-5) = \frac{\pi}{2}$ is	(R)	2
(D)	The number of ordered pair (x, y) satisfying the equation $\sin x + \sin y = \sin(x + y)$ and $ x + y = 1$ is	(S)	3
		(T)	6

3.

1	Column-l		Column-II
(A)	Minimum value of $y = 4 \sec^2 x + \cos^2 x$ for permissible real values of x is equal to	(P)	2
(B)	If <i>m</i> , <i>n</i> are positive integers and $m + n\sqrt{2} = \sqrt{41 + 24\sqrt{2}}$ then $(m + n)$ is equal to :	(Q)	7

341

-

A STATE

1:5-1-
	Advanced Proble	ms in l	Mathematics for JEE
(C)	Number of solutions of the equation : $\log_{\left(\frac{9x-x^2-14}{7}\right)}(\sin 3x - \sin x) = \log_{\left(\frac{9x-x^2-14}{7}\right)}\cos 2x$ is equal to :	(R)	4
(D)	Consider an arithmetic sequence of positive integers. If the sum of the first ten terms is equal to the 58th term, then the least possible value of the first term is equal to :	(S)	5
		(T)	3

Answers	
1. $A \rightarrow R, T; B \rightarrow P; C \rightarrow P, Q, R; D \rightarrow Q$	
2. $A \rightarrow S$; $B \rightarrow P, T$; $C \rightarrow R$; $D \rightarrow T$	
3. $A \rightarrow S$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow R$	

Exercise-5 : Subjective Type Problems

- 1. Find the number of solutins of the equations $(\sin x - 1)^3 + (\cos x - 1)^3 + (\sin x)^3 = (2 \sin x + \cos x - 2)^3$ in [0, 2 π].
- **2.** If $x + \sin y = 2014$ and $x + 2014 \cos y = 2013$, $0 \le y \le \frac{\pi}{2}$, then find the value of [x + y] 2005 (where [·] denotes greatest integer function)
- **3.** The complete set of values of x satisfying $\frac{2\sin 6x}{\sin x 1} < 0$ and $\sec^2 x 2\sqrt{2} \tan x \le 0 \ln \left(0, \frac{\pi}{2}\right)$ is $[a, b) \cup (c, d]$, then find the value of $\left(\frac{cd}{ab}\right)$.
- **4.** The range of value's of k for which the equation $2\cos^4 x \sin^4 x + k = 0$ has at least one solution is $[\lambda, \mu]$. Find the value of $(9\mu + \lambda)$.
- 5. The number of points in interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, where the graphs of the curves $y = \cos x$ and $y = \sin 3x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ intersects is
- 6. The number of solutions of the system of equations :

$$2\sin^2 x + \sin^2 2x = 2$$
$$\sin 2x + \cos 2x = \tan x$$

in [0, 4π] satisfying $2\cos^2 x + \sin x \le 2$ is :

- 7. If the sum of all the solutions of the equation $3\cot^2 \theta + 10\cot \theta + 3 = 0$ in $[0, 2\pi]$ is $k\pi$ where $k \in I$, then find the value of k.
- **8.** If the sum of all values of θ , $0 \le \theta \le 2\pi$ satisfying the equation (8 cos 4 θ - 3)(cot θ + tan θ - 2) (cot θ + tan θ + 2) = 12 is $k\pi$, then k is equal to :
- 9. Find the number of solutions of the equation $2\sin^2 x + \sin^2 2x = 2$; $\sin 2x + \cos 2x = \tan x$ in $[0, 4\pi]$ satisfying the condition $2\cos^2 x + \sin x \le 2$.

Chapter 24 – Solution of Triangles

۲	Exercise-1 : Single	Choice Problems		5-
1.	In a $\triangle ABC$ if $9(a^2 + b^2)$	$^{2}) = 17c^{2}$ then the value	of the expression	$ con \frac{\cot A + \cot B}{\cot C} $ is :
	(a) $\frac{13}{4}$	(b) $\frac{7}{4}$	(c) $\frac{5}{4}$	(d) $\frac{9}{4}$
2.	Let <i>H</i> be the orthocer incircle of $\triangle CHB$ is :	nter of triangle ABC, the	n angle subten	ded by side BC at the centre of
	(a) $\frac{A}{2} + \frac{\pi}{2}$	(b) $\frac{B+C}{2} + \frac{\pi}{2}$	(c) $\frac{B-C}{2} + \frac{\pi}{2}$	(d) $\frac{B+C}{2}+\frac{\pi}{4}$
3.	Circum radius of a $\triangle A$	BC is 3 units; let O be the	circum centre a	nd H be the orthocentre then the
	value of $\frac{-}{64}(AH^2 + BC)$	$C^{2}(BH^{2} + AC^{2})(CH^{2} + C^{2})$	AB^2) equals :	
	(a) 3 ⁴	(b) 9 ³	(c) 27 ⁶	(d) 81 ⁴
4.	The angles A, B and C	of a triangle ABC are in	n arithmetic pro	ogression. If $2b^2 = 3c^2$ then the
	angle A is: (a) 15°	(b) 60°	(c) 759	
F	(a) 15	$A_{\text{ton}} C_{-1}$ and a_{-1}	(c) 75 ²	(d) 90°
э.	In a triangle Abc, it ta	$\frac{11-1}{2}$ $\frac{11-1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$	+, then the leas	t value of b is :
	(notation have their us	sual meaning)		
	(a) 1	(b) 2	(c) 4	(d) 6
6.	In a triangle ABC the e	expression $a \cos B \cos C +$	$b\cos C\cos A +$	$c \cos A \cos B$ equals to :
	(a) $\frac{rs}{R}$	(b) $\frac{r}{sR}$	(c) $\frac{R}{rs}$	(d) $\frac{Rs}{r}$
7.	The set of real number	rs a such that $a^2 + 2a$, $2a$	$+3, a^2 + 3a + 3a$	8 are the sides of a triangle is :
	(a) (0,∞)	(b) (5,8)	(c) $\left(-\frac{11}{3},\infty\right)$	(d) (5,∞)

8. In a $\triangle ABC$, $\angle B = \frac{\pi}{3}$ and $\angle C = \frac{\pi}{4}$ let *D* divide *BC* internally in the ratio 1 : 3, then $\frac{\sin(\angle BAD)}{\sin(\angle CAD)}$ is equal to : (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{\sqrt{2}}{3}$ (a) $\frac{1}{\sqrt{6}}$ (b) $\frac{1}{3}$ 9. Let AD, BE, CF be the lengths of internal bisectors of angles A, B, C respectively of triangle ABC. Then the harmonic mean of $AD \sec \frac{A}{2}$, $BE \sec \frac{B}{2}$, $CF \sec \frac{C}{2}$ is equal to : (b) Geometric mean of sides of $\triangle ABC$ (a) Harmonic mean of sides of $\triangle ABC$ (d) Sum of reciprocals of the sides of $\triangle ABC$ (c) Arithmetic mean of sides of $\triangle ABC$ **10.** In triangle ABC, if 2b = a + c and $A - C = 90^\circ$, then sin B equals : [Note : All symbols used have usual meaning in triangle ABC.] (d) $\frac{\sqrt{5}}{3}$ (c) $\frac{\sqrt{7}}{4}$ (b) $\frac{\sqrt{5}}{8}$ (a) $\frac{\sqrt{7}}{5}$ **11.** In a triangle ABC, if $2a \cos\left(\frac{B-C}{2}\right) = b + c$, then sec A is equal to : (All symbols used have usual meaning in a triangle.) (a) $\frac{2}{\sqrt{3}}$ (b) √2 (d) 3 (c) 2 **12.** Triangle ABC has BC = 1 and AC = 2, then maximum possible value of $\angle A$ is : (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (a) $\frac{\pi}{6}$ **13.** $\Delta I_1 I_2 I_3$ is an excentral triangle of an equilateral triangle ΔABC such that $I_1 I_2 = 4$ unit, if ΔDEF is pedal triangle of $\triangle ABC$, then $\frac{Ar(\Delta I_1 I_2 I_3)}{Ar(\triangle DEF)} =$ (d) 1 (c) 2 (b) 4 (a) 16 **14.** Let ABC be a triangle with $\angle BAC = \frac{2\pi}{3}$ and AB = x such that (AB)(AC) = 1. If x varies then the longest possible length of the internal angle bisector AD equals : (b) $\frac{1}{2}$ (a) $\frac{1}{3}$ (d) $\frac{\sqrt{2}}{2}$ (c) **15.** In an equilateral triangle r, R and r_1 form (where symbols used have usual meaning) (c) an H.P. (d) none of these (b) a G.P. (a) an A.P. **16.** In $\triangle ABC$ if $\frac{\sin A}{\sin C} = \frac{\sin(A-B)}{\sin(B-C)}$, then a^2, b^2, c^2 are in : (d) none of these (c) H.P. (b) G.P. (a) A.P.

17	. In /	ABC, tan $A = 2$, t	an B =	$=\frac{3}{2}$ and $c=\sqrt{65}$, the	en cir	cumradius of the	riangle is :
	(a)	65	(b)	<u>65</u> 7	(c)	<u>65</u> 14	(d) none of these
18	. If th	ne sides a, b, c of a t	Tiang	le ABC are the roots	ofth	ne equation $x^3 - 1$	$3x^2 + 54x - 72 = 0$, then
	the	value of $\frac{\cos A}{a} + \frac{\cos A}{a}$	$\frac{\cos B}{b}$ +	$\frac{\cos C}{c}$ is equal to :			
	(a)	$\frac{61}{144}$	(Ъ)	$\frac{61}{72}$	(c)	$\frac{169}{144}$	(d) $\frac{59}{144}$
19	. In A	ABC, if $\angle C = 90^{\circ}$, ther	$a\frac{a+c}{b} + \frac{b+c}{a}$ is equ	al to	:	
	(a)	$\frac{c}{r}$	(b)	$\frac{1}{2Rr}$	(c)	2	(d) $\frac{R}{r}$
20.	In a	ΔABC , if $a^2 \sin B$	$=b^2$	$+c^2$, then :			
	(a)	$\angle A$ is obtuse	(b)	$\angle A$ is acute	(c)	$\angle B$ is obtuse	(d) $\angle A$ is right angle
21.	If R	and R' are the circ	umra	dii of triangles ABC	and	OBC, where O is the	e orthocenter of triangle
	ABC	C, then :					Ū
	(a)	$R'=\frac{R}{2}$	(b)	R' = 2R	(c)	R' = R	(d) $R' = 3R$
22.	The	acute angle of a r	homb	ous whose side is geo	omet	ric mean between	its diagonals, is :
	(a)	15°	(b)	20°	(c)	30°	(d) 60°
23.	In a	ΔABC right angle	d at A	A, a line is drawn thi	rougl	h A to meet BC at.	D dividing BC in 2 : 1. If
	tan	$(\angle ADC) = 3$ then	∠BAI	D is :			
	(a)	30°	(b)	45°	(c)	60°	(d) 75°
24.	A cit	rcle is cirumscribe circle is :	d in a	n equilateral triangl	e of s	ide ' <i>l</i> '. The area o	f any square inscribed in
	(a)	$\frac{4}{3}l^2$	(b)	$\frac{2}{3}l^2$	(c)	$\frac{1}{3}l^2$	(d) l^2
25.	If th will	e sides of a triangl be :	e are	in the ratio $2:\sqrt{6}:$	(√3	+ 1), then the larg	gest angle of the triangle
	(a)	60°	(b)	72°	(c)	75°	(d) 90°
26.	In a	triangle ABC if a,	b, c ar	e in A.P. and C - A =	= 120	p° , then $\frac{s}{s} =$	
	(whe	ere notations have	their	usual meaning)		,	
	(a)	$\sqrt{15}$	(b)	2√15	(c)	3√15	(d) 6√15
27.	In a	triangle ABC, a =	5, b =	$4 \text{ and } \cos(A - B) =$	$\frac{31}{32}$	then the third side	e is equal to :
	(whe	ere symbols used h	nave i	usual meanings)			
	(a)	√6	(Ъ)	6√6	(c)	6	(d) (216) ^{1/4}

Solution of Triangles

28. If semiperimeter of a triangle is 15, then the value of $(b + c)\cos(B + C) + (c + a)\cos(C + A) + (c + a)\cos(C + A)$ $(a+b)\cos(A+B)$ is equal to : (where symbols used have usual meanings) (a) -60 (b) -15 (d) can not be determined (c) -30 **29.** Let triangle ABC be an isosceles triangle with AB = AC. Suppose that the angle bisector of its angle B meets the side AC at a point D and that BC = BD + AD. Measure of the angle A in degrees, is : (d) 130 (c) 110 (a) 80 (b) 100 **30.** In triangle ABC if A:B:C = 1:2:4, then $(a^2 - b^2)(b^2 - c^2)(c^2 - a^2) = \lambda a^2 b^2 c^2$, where $\lambda = \lambda a^2 b^2 c^2$. (where notations have their usual meaning) (d) 9 (a) 1 (b) 2 (c) 4 **31.** In a triangle ABC with altitude AD, $\angle BAC = 45^\circ$, DB = 3 and CD = 2. The area of the triangle ABC is : (d) 12 (c) 15/4 (a) 6 (b) 15 32. A triangle has base 10 cm long and the base angles of 50° and 70°. If the perimeter of the triangle is $x + y \cos z^\circ$ where $z \in (0, 90)$ then the value of x + y + z equals : (c) 50 (d) 40 (b) 55 (a) 60 **33.** Let H be the orthocenter of triangle ABC, then angle subtended by side BC at the centre of incircle of $\triangle CHB$ is : (b) $\frac{B+C}{2} + \frac{\pi}{2}$ (c) $\frac{B-C}{2} + \frac{\pi}{2}$ (d) $\frac{B+C}{2} + \frac{\pi}{4}$ (a) $\frac{A}{2} + \frac{\pi}{2}$ **34.** Triangle ABC is right angled at A. The points P and Q are on the hypotenuse BC such that BP = PQ = QC. If AP = 3 and AQ = 4 then the length BC is equal to : (d) √54 (b) √36 (c) √45 (a) $\sqrt{27}$ **35.** In a $\triangle ABC$ if $b = a(\sqrt{3} - 1)$ and $\angle C = 30^\circ$ then the measure of the angle A is : (d) 105° (c) 75° (b) 45° (a) 15° 36. Through the centroid of an equilateral triangle, a line parallel to the base is drawn. On this line, an arbitrary point P is taken inside the triangle. Let h denote the perpendicular distance of Pfrom the base of the triangle. Let h_1 and h_2 be the perpendicular distance of P from the other two sides of the triangle. Then : (a) $h = \frac{h_1 + h_2}{2}$ (b) $h = \sqrt{h_1 h_2}$ (d) $h = \frac{(h_1 + h_2)\sqrt{3}}{4}$ (c) $h = \frac{2h_1h_2}{h_1 + h_2}$ **37.** The angles A, B and C of a triangle ABC are in arithmetic progression. AB = 6 and BC = 7. Then

AC is: (a) $\sqrt{41}$ (b) $\sqrt{39}$ (c) $\sqrt{42}$ (d) $\sqrt{43}$

Advanced Problems in Mathematics for JEE

38	In A	ΔABC , If $A - B$	s = 120° an	d $R = 8r$, then	n the value	of $\frac{1 + \cos C}{1 - \cos C}$ equal	s :
	(A)	l symbols used	have the	r usual mean	ing in a tria	angle)	
	(a)	12	(b)	15	(c)	21	(d) 31
39	. The	e lengths of the	e sides CB a	and CA of a tri	iangle ABC	are given by a and	b and the angle C is $\frac{2\pi}{3}$.
	The	e line CD bisect	ts the angl	e C and meet	s AB at D. T	hen the length of	CD is :
		1		$a^2 + b^2$		ab	(d) ab
	(a)	$\overline{a+b}$	(b)	a+b	(c)	$\overline{2(a+b)}$	a+b
40	. In /	ABC, angle	A is 120°,	BC + CA = 20	and AB +	BC = 21, then th	e length of the side BC,
	equ	als :					
	(a)	13	(b)	15	(c)	17	(d) 19
41	. Atr	iangle has side	es 6, 7, 8. '	The line throu	gh its incen	tre parallel to the	shortest side is drawn to
	mee	et the other tw	vo sides at	P and Q . The	length of t	he segment PQ is	33
	(a)	$\frac{12}{5}$	(b)	$\frac{15}{4}$	(c)	30	(d) $\frac{35}{9}$
12	The	perimeter of a	AABCis	T 18 cm and one	side is 20 c	, m Then remainin	ng sides of AABC must be
44	grea	ater than :		to cin and one	. side 13 20 c	ini. Then remainin	ing states of Lando mast be
	(a)	8 cm	(b)	9 cm	(c)	12 cm	(d) 4 cm
43.	. In a	n equilateral A	ΔABC , (wh	nere symbols	used have u	usual meanings),	then r , R and r_1 form :
	(a)	an A.P.		-	(b)	a G.P.	an a server e∎ serversessor yr
	(c)	an H.P.			(d)	neither an A.P., C	G.P. nor H.P.
44	The	$expression \frac{a}{a}$	(a+b+c)(b)	(c+a)(c+a)	a – b)(a + b	(-c) is equal to :	
	inc	chprebbien		$4b^2c^2$		1	
	(a)	$\cos^2 A$	(b)	$\sin^2 A$	(c)	$\cos A \cos B \cos C$	(d) $\sin A \sin B \sin C$
	(wh	ere symbols u	sed have	usual meanin	gs)		
45.	Circ	umradius of a	n isoscele	$s \Delta ABC$ with	$\angle A = \angle B$ is	s 4 times its in rac	lius, then cos A is root of
	the	equation :		2		2	
	(a)	$x^2 - x - 8 = 0$) (b)	$8x^2 - 8x + 1$	=0 (c)	$x^2 - x - 4 = 0$	(d) $4x^2 - 4x + 1 = 0$
46.	A is	the orthocent	tre of $\triangle AB$	C and D is ref	lection poi	nt of A w.r.t. perp	endicular bisector of BC,
	then	orthocenter o	of ΔDBC is	:			
	(a)	D	(D)	C	(c)	В	(d) A
47.	If a,	b, c are sides	of a scale	ne triangle, tl	hen the val	ue of determinan	$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix}$ is always:
	(a)	≥ 0	(b)	> 0	(c)	≤ -1	(d) < 0
48.	In a	triangle ABC	if $A:B:$	C = 1:2:4,1	then $(a^2 - $	b^2) $(b^2 - c^2) (c^2)$	$-a^2$ = $\lambda a^2 h^2 a^2$ where
	λ=:						-) - Au D C , where

56. In a $\triangle ABC$, with usual notations, if b > c then distance between foot of median and foot of altitude both drawn from vertex A on BC is :

(a)
$$\frac{a^2 - b^2}{2c}$$
 (b) $\frac{b^2 - c^2}{2a}$ (c) $\frac{b^2 + c^2 - a^2}{2a}$ (d) $\frac{b^2 + c^2 - a^2}{2c}$

57. In a triangle ABC the expression $a \cos B \cos C + b \cos C \cos A + c \cos A \cos B$ equals to :

(a)
$$\frac{rs}{R}$$
 (b) $\frac{r}{sR}$ (c) $\frac{R}{rs}$ (d) $\frac{Rs}{r}$

58. In an acute triangle *ABC*, altitudes from the vertices *A*, *B* and *C* meet the opposite sides at the points *D*, *E* and *F* respectively. If the radius of the circumcircle of $\triangle AFE$, $\triangle BFD$, $\triangle CED$, $\triangle ABC$ be respectively R_1 , R_2 , R_3 and *R*. Then the maximum value of $R_1 + R_2 + R_3$ is :

(a)
$$\frac{3R}{8}$$
 (b) $\frac{2R}{3}$ (c) $\frac{4R}{3}$ (d) $\frac{3R}{2}$

59. A circle of area 20 sq. units is centered at the point *O*. Suppose $\triangle ABC$ is inscribed in that circle and has area 8 sq. units. The central angles α , β and γ are as shown in the figure. The value of $(\sin \alpha + \sin \beta + \sin \gamma)$ is equal to :

(b)

2	1		5		م و مع مرد و خریدی	and a		A	nsv	vers	5								1
1.	(d)	2.	(Ъ)	3.	(b)	4.	(c)	5.	(b)	6.	(a)	7.	(d)	8.	(a)	9.	(a)	10.	(c)
11.	(c)	12.	(a)	13.	(a)	14.	(Ъ)	15.	(a)	16.	(a)	17.	(c)	18.	(a)	19.	(a)	20.	(a)
21.	(c)	22.	(c)	23.	(Ъ)	24.	(Ъ)	25.	(c)	26.	(c)	27.	(c)	28.	(c)	29.	(b)	30.	(a)
31.	(b)	32.	(d)	33.	(b)	34.	(c)	35.	(d)	36.	(a)	37.	(d)	38.	(b)	39.	(d)	40.	(a)
41.	(c)	42.	(d)	43.	(a)	44.	(b)	45.	(b)	46.	(a)	47.	(d)	48.	(a)	49.	(d)	50.	(b)
51.	(a)	52.	(c)	53.	(c)	54.	(a)	55.	(a)	56.	(b)	57.	(a)	58.	(d)	59.	(a)		

(a) $\frac{4\pi}{5}$

Exercise-2 : One or More than One Answer is/are Correct **1.** If r_1 , r_2 , r_3 are radii of the escribed circles of a triangle ABC and r is the radius of its incircle, then the root(s) of the equation $x^2 - r(r_1r_2 + r_2r_3 + r_3r_1)x + (r_1r_2r_3 - 1) = 0$ is/are : (a) r₁ (b) $r_2 + r_3$ (c) 1 (d) $r_1 r_2 r_3 - 1$ **2.** In $\triangle ABC$, $\angle A = 60^{\circ}$, $\angle B = 90^{\circ}$, $\angle C = 30^{\circ}$. Let *H* be its orthocentre, then : (where symbols used have usual meanings) (a) AH = c(b) CH = a(c) AH = a(d) BH = 03. In an equilateral triangle, if inradius is a rational number then which of the following is/are correct ? (a) circumradius is always rational (b) exradii are always rational (c) area is always ir-rational (d) perimeter is always rational **4.** Let A, B, C be angles of a triangle ABC and let $D = \frac{5\pi + A}{32}$, $E = \frac{5\pi + B}{32}$, $F = \frac{5\pi + C}{32}$, then : where $D, E, F \neq \frac{n\pi}{2}, n \in I, I$ denote set of integers (a) $\cot D \cot E + \cot E \cot F + \cot D \cot F = 1$ (b) $\cot D + \cot E + \cot F = \cot D \cot E \cot F$ (c) $\tan D \tan E + \tan E \tan F + \tan F \tan D = 1$ (d) $\tan D + \tan E + \tan F = \tan D \tan E \tan F$ **5.** In a triangle *ABC*, if a = 4, b = 8 and $\angle C = 60^{\circ}$, then : (where symbols used have usual meanings) (c) $\angle A = 30^{\circ}$ (b) $c = 4\sqrt{3}$ (a) c = 6(d) $\angle B = 90^{\circ}$ **6.** In a $\triangle ABC$ if $\frac{r}{r_1} = \frac{r_2}{r_3}$, then which of the following is/are true ? (where symbols used have usual meanings) (b) $\sin^2 A + \sin^2 B + \sin^2 C = 2$ (a) $a^2 + b^2 + c^2 = 8R^2$ (c) $a^2 + b^2 = c^2$ (d) $\Delta = s(s+c)$ 7. ABC is a triangle whose circumcentre, incentre and orthocentre are O, I and H respectively which lie inside the triangle, then :

(a) $\angle BOC = A$ (b) $\angle BIC = \frac{\pi}{2} + \frac{A}{2}$ (c) $\angle BHC = \pi - A$ (d) $\angle BHC = \pi - \frac{A}{2}$

8. In a triangle *ABC*, tan *A* and tan *B* satisfy the inequality $\sqrt{3}x^2 - 4x + \sqrt{3} < 0$, then which of the following must be correct ?

(where symbols used have usual meanings)

(a) $a^{2} + b^{2} - ab < c^{2}$ (b) $a^{2} + b^{2} > c^{2}$ (c) $a^{2} + b^{2} + ab > c^{2}$ (d) $a^{2} + b^{2} < c^{2}$

9. If in a $\triangle ABC$; $\angle C = \frac{\pi}{8}$; $a = \sqrt{2}$; $b = \sqrt{2 + \sqrt{2}}$ then the measure of $\angle A$ can be : (d) 150° (a) 45° (c) 30° (b) 135° **10.** In triangle ABC, a = 3, b = 4, c = 2. Point D and E trisect the side BC. If $\angle DAE = \theta$, then $\cot^2 \theta$ is divisible by : (d) 7 (a) 2 (b) 3 (c) 5 **11.** In a $\triangle ABC$ if $3\sin A + 4\cos B = 6$; $4\sin B + 3\cos A = 1$ then possible value(s) of |C| be: (d) $\frac{5\pi}{6}$ (b) $\frac{\pi}{6}$ (a) (c) 4 **12.** If the line joining the incentre to the centroid of a triangle ABC is parallel to the side BC. Which of the following are correct ? (c) $\cot \frac{A}{2} \cot \frac{C}{2} = 3$ (d) $\cot \frac{B}{2} \cot \frac{C}{2} = 3$ (a) 2b = a + c(b) 2a = b + c13. In a triangle the length of two larger sides are 10 and 9 respectively. It the angles are in A.P., the length of third side can be : (d) $6 + \sqrt{5}$ (c) $6 - \sqrt{5}$ (a) $5 - \sqrt{6}$ (b) $5 + \sqrt{6}$ **14.** If area of $\triangle ABC$, \triangle and angle C are given and if the side c opposite to given angle is minimum, then (a) $a = \sqrt{\frac{2\Delta}{\sin C}}$ (b) $b = \sqrt{\frac{2\Delta}{\sin C}}$ (c) $a = \frac{4\Delta}{\sin C}$ (d) $b = \frac{4\Delta}{\sin^2 C}$ **15.** In a triangle ABC, if $\tan A = 2 \sin 2C$ and $3 \cos A = 2 \sin B \sin C$ then possible values of C is/are (b) $\frac{\pi}{6}$ (a) $\frac{\pi}{8}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{3}$

2.	1				Ans	wers	5				1
1.	(c, d)	2.	(a, b, d)	3.	(a, b, c)	4.	(b, c)	5.	(b, c, d)	6.	(a, b, c)
7.	(b, c)	8.	(a, c)	9.	(a)	10.	(b, c)	11.	(b)	12.	(b, d)
13.	(a, b)	14.	(a, b)	15.	(c, d)	1					

Exercise-3 : Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let $\angle A = 23^\circ$, $\angle B = 75^\circ$ and $\angle C = 82^\circ$ be the angles of $\triangle ABC$.

The incircle of $\triangle ABC$ touches the sides BC, CA, AB at points D, E, F respectively. Let r', r_1' respectively be the inradius, exradius opposite to vertex D of $\triangle DEF$ and r be the inradius of $\triangle ABC$, then

1. $\frac{r'}{r} =$ (a) $\sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2} - 1$ (b) $1 - \sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2}$ (c) $\cos\frac{A}{2} + \cos\frac{B}{2} + \cos\frac{C}{2} - 1$ (d) $1 - \cos\frac{A}{2} + \cos\frac{B}{2} + \cos\frac{C}{2}$ 2. $\frac{r_1'}{r} =$ (a) $\sin\frac{A}{2} + \sin\frac{B}{2} + \sin\frac{C}{2} - 1$ (b) $1 - \sin\frac{A}{2} + \sin\frac{B}{2} + \cos\frac{C}{2}$ (c) $\cos\frac{A}{2} + \cos\frac{B}{2} + \cos\frac{C}{2} - 1$ (d) $1 - \cos\frac{A}{2} + \cos\frac{B}{2} + \sin\frac{C}{2}$

Paragraph for Question Nos. 3 to 4

Internal angle bisectors of $\triangle ABC$ meets its circum circle at D, E and F where symbols have usual meaning.

- **3.** Area of $\triangle DEF$ is :
 - (a) $2R^2 \cos^2\left(\frac{A}{2}\right) \cos^2\left(\frac{B}{2}\right) \cos^2\left(\frac{C}{2}\right)$ (c) $2R^2 \sin^2\left(\frac{A}{2}\right) \sin^2\left(\frac{B}{2}\right) \sin^2\left(\frac{C}{2}\right)$
- (b) $2R^{2} \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right)$ (d) $2R^{2} \cos\left(\frac{A}{2}\right) \cos\left(\frac{B}{2}\right) \cos\left(\frac{C}{2}\right)$

353

- 4. The ratio of area of triangle ABC and triangle DEF is :
 - (a) ≥ 1 (b) ≤ 1 (c) $\geq 1/2$ (d) $\leq 1/2$

Paragraph for Question Nos. 5 to 6

Let triangle ABC is right triangle right angled at C such that A < B and r = 8, R = 41.

5. Area of $\triangle ABC$ is :

```
(a) 720 (b) 1440 (c) 360 (d) 480
```

6.
$$\tan \frac{A}{2} =$$

(a) $\frac{1}{18}$ (b) $\frac{1}{3}$ (c) $\frac{1}{6}$ (d) $\frac{1}{9}$

[where notations have their usual meaning]

Paragraph for Question Nos. 7 to 8 Let the incircle of $\triangle ABC$ touches the sides BC, CA, AB at A_1, B_1, C_1 respectively. The incircle of $\triangle A_1B_1C_1$ touches its sides of B_1C_1, C_1A_1 and A_1B_1 at A_2, B_2, C_2 respectively and so on. 7. $\lim_{n\to\infty} \angle A_n =$ (a) 0 (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{3}$ 8. $\ln \triangle A_4B_4C_4$, the value of $\angle A_4$ is : (a) $\frac{3\pi + A}{6}$ (b) $\frac{3\pi - A}{8}$ (c) $\frac{5\pi - A}{16}$ (d) $\frac{5\pi + A}{16}$ Paragraph for Question Nos. 9 to 10 Let ABC be a given triangle. Points D and E are on sides AB and AC respectively and point F is on line segment DE. Let $\frac{AD}{AB} = x, \frac{AE}{AC} = y, \frac{DF}{DE} = z$. Let area of $\triangle BDF = \Delta_1$, area of $\triangle CEF = \Delta_2$ and area of $\triangle ABC = \Delta$. 9. $\frac{\Delta_1}{\Delta}$ is equal to : (a) xyz (b) (1-x)y(1-z) (c) (1-x)yz (d) x(1-y)z10. $\frac{\Delta_2}{\Delta}$ is equal to : (a) (1-x)y(1-z) (b) (1-x)(1-y)z (c) x(1-y)(1-z) (d) (1-x)yz

Paragraph for Question Nos. 11 to 13

a, b, c are the length of sides BC, CA, AB respectively of $\triangle ABC$ satisfying $\log\left(1+\frac{c}{a}\right) + \log a - \log b = \log 2$.

Also the quadratic equation $a(1 - x^2) + 2bx + c(1 + x^2) = 0$ has two equal roots.

Solution of Triangles

11.	a, b,	c are in :					
	(a)	A.P.	(b)	G.P.	(c)	H.P.	(d) None
12.	Mea	sure of angle C is :					
	(a)	30°	(b)	45°	(c)	60°	(d) 90°
13.	The	value of $(\sin A + \sin A)$	in B -	sinC) is equal to :			
	(a)	5 2			(b)	$\frac{12}{5}$	
	(c)	83			(d)	2	

Paragraph for Question Nos. 14 to 16

Let ABC be a triangle inscribed in a circle and let $l_a = \frac{m_a}{M_a}$; $l_b = \frac{m_b}{M_b}$; $l_c = \frac{m_c}{M_c}$ where m_a, m_b, m_c are the lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and M_a, M_b and M_c are the lengths of these internal angle bisectors extended until they meet the circumcircle.

14. l_a equals :

to .

(a)	$\frac{\sin A}{\sin\left(B+\frac{A}{2}\right)}$	(b) $\frac{\sin B \sin C}{\sin^2 \left(\frac{B+C}{2}\right)}$	(c) $\frac{\sin B \sin C}{\sin^2 \left(B + \frac{A}{2}\right)}$	(d) $\frac{\sin B + \sin C}{\sin^2 \left(B + \frac{A}{2}\right)}$
	$\sin\left(B+\frac{A}{2}\right)$	$\sin^2\left(\frac{B+C}{2}\right)$	$\sin^2\left(B+\frac{A}{2}\right)$	$\sin^2\left(B+\frac{A}{2}\right)$

15. The maximum value of the product $(l_a l_b l_c) \times \cos^2\left(\frac{B-C}{2}\right) \times \cos^2\left(\frac{C-A}{2}\right) \times \cos^2\left(\frac{A-B}{2}\right)$ is equal

(a)
$$\frac{1}{8}$$
 (b) $\frac{1}{64}$ (c) $\frac{27}{64}$ (d) $\frac{27}{32}$

16. The minimum value of the expression $\frac{l_a}{\sin^2 A} + \frac{l_b}{\sin^2 B} + \frac{l_c}{\sin^2 C}$ is :

(a) 2 (b) 3 (c) 4 (d) none of these

2	/	Line -		and the second			19125	A	nsv	vers	S								1
1.	(a)	2.	(b)	3.	(d)	4.	(b)	5.	(a)	6.	(d)	7.	(d)	8.	(d)	9.	(c)	10.	(c)
11.	(a)	12.	(d)	13.	(b)	14.	(c)	15.	(c)	16.	(b)								

5-

100

Exercise-4 : Matching Type Problems

1. Consider a right angled triangle **ABC right angled at C** with integer sides. List-I gives inradius. List-II gives the number of triangles.

	Column-I		Column-ll
(A)	3	(P)	6
(B)	4	(Q)	7
(C)	6	(R)	8
(D)	9	(S)	10
		(T)	12

2.

	Column-I		Column-ll
(A)	Find the sum of the series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9} + \frac{1}{12} + \dots \infty$, where the terms are the reciprocals of the positive integers whose only prime factors are two's and three's	(P)	7
(B)	The length of the sides of $\triangle ABC$ are a, b and c and A is the angle opposite to side a . If $b^2 + c^2 = a^2 + 54$ and $bc = \frac{a^3}{\cos A}$ then the value of $\left(\frac{b^2 + c^2}{9}\right)$, is	(Q)	10
(C)	The equations of perpendicular bisectors of two sides AB and AC of a triangle ABC are $x + y + 1 = 0$ and $x - y + 1 = 0$ respectively. If circumradius of $\triangle ABC$ is 2 units and the locus of vertex A is $x^2 + y^2 + gx + c = 0$, then $(g^2 + c^2)$, is equal to	(R)	13
(D)	Number of solutions of the equation $\cos \theta \sin \theta + 6(\cos \theta - \sin \theta) + 6 = 0$ in [0, 30], is equal to	(S)	3

3. In $\triangle ABC$, if $r_1 = 21$, $r_2 = 24$, $r_3 = 28$, then

1	Column-l		Column-II
(A)	<i>a</i> =	(P)	8
(B)	<i>b</i> =	(Q)	12
(C)	s =	(R)	26

Solution	01	Triangles	
100000000	v ,	11.000	

(D)	<i>r</i> =	(\$)	28
		(T)	42

(Where notations have their usual meaning)

4.

	Column-I		Column-II
(A)	$\frac{r_1(r_2+r_3)}{\sqrt{r_2r_3+r_3r_1+r_1r_2}}$	(P)	$sin\frac{A}{2}$
(B)	$\frac{r_1}{\sqrt{(r_1+r_2)(r_1+r_3)}}$	(Q)	4R
(C)	$r_1 + r_2 + r_3 - r$	(R)	0
(D)	$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} - \frac{1}{r}$	(S)	2R sin A

Answers	
1. $A \rightarrow P; B \rightarrow P; C \rightarrow T; D \rightarrow S$	
2. $A \rightarrow S; B \rightarrow P; C \rightarrow R; D \rightarrow Q$	
3. $A \rightarrow R$; $B \rightarrow S$; $C \rightarrow T$; $D \rightarrow P$	
4. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$	

Exercise-5 : Subjective Type Problems

- **1.** If the median AD of $\triangle ABC$ makes an angle $\angle ADC = \frac{\pi}{4}$. Find the value of $|\cot B \cot C|$.
- 2. In a $\triangle ABC$, $a = \sqrt{3}$, b = 3 and $\angle C = \frac{\pi}{3}$. Let internal angle bisector of angle C intersects side AB at D and altitude from B meets the angle bisector CD at E. If O_1 and O_2 are incentres of $\triangle BEC$ and
- $\triangle BED$. Find the distance between the vertex *B* and orthocentre of $\triangle O_1 EO_2$. **3.** In a $\triangle ABC$; inscribed circle with centre *I* touches sides *AB*, *AC* and *BC* at *D*, *E*, *F* respectively.
- Let area of quadrilateral ADIE is 5 units and area of quadrilteral BFID is 10 units. Find the value C

of
$$\frac{\cos\left(\frac{-}{2}\right)}{\sin\left(\frac{A-B}{2}\right)}$$
.

- **4.** If Δ be area of incircle of a triangle *ABC* and Δ_1 , Δ_2 , Δ_3 be the area of excircles then find the least value of $\frac{\Delta_1 \Delta_2 \Delta_3}{729 \Lambda^3}$.
- 5. In $\triangle ABC$, b = c, $\angle A = 106^{\circ}$, M is an interior point such that $\angle MBA = 7^{\circ}$, $\angle MAB = 23^{\circ}$ and $\angle MCA = \theta^{\circ}$, then $\frac{\theta}{2}$ is equal to

(where notations have their usual meaning)

- **6.** In an acute angled triangle *ABC*, $\angle A = 20^\circ$, let *DEF* be the feet of altitudes through *A*, *B*, *C* respectively and *H* is the orthocentre of $\triangle ABC$. Find $\frac{AH}{AD} + \frac{BH}{BE} + \frac{CH}{CF}$.
- 7. Let $\triangle ABC$ be inscribed in a circle having radius unity. The three internal bisectors of the angles A, B and C are extended to intersect the circumcircle of $\triangle ABC$ at A_1, B_1 and C_1 respectively. Then $\frac{AA_1 \cos \frac{A}{2} + BB_1 \cos \frac{B}{2} + CC_1 \cos \frac{C}{2}}{\sin A + \sin B + \sin C} =$
- 8. If the quadratic equation $ax^2 + bx + c = 0$ has equal roots where *a*, *b*, *c* denotes the lengths of the sides opposite to vertex *A*, *B* and *C* of the $\triangle ABC$ respectively. Find the number of integers in the range of $\frac{\sin A}{\sin C} + \frac{\sin C}{\sin A}$.
- 9. If in the triangle ABC, $\tan \frac{A}{2}$, $\tan \frac{B}{2}$ and $\tan \frac{C}{2}$ are in harmonic progression then the least value of $\cot^2 \frac{B}{2}$ is equal to :
- **10.** In $\triangle ABC$, if circumradius 'R' and inradius 'r' are connected by relation $R^2 4Rr + 8r^2 12r + 9 = 0$, then the greatest integer which is less than the semiperimeter of $\triangle ABC$ is :

11. Sides AB and AC in an equilateral triangle ABC with side length 3 is extended to form two rays from point A as shown in the figure. Point P is chosen outside the triangle ABC and between the two rays such that $\angle ABP + \angle BCP = 180^\circ$. If the maximum length of CP is M, then $M^2/2$ is equal to :

- **12.** Let a, b, c be sides of a triangle ABC and \triangle denotes its area. If a = 2; $\triangle = \sqrt{3}$ and $a\cos C + \sqrt{3} a\sin C - b - c = 0$; then find the value of (b + c). (symbols used have usual meaning in $\triangle ABC$).
- **13.** If circumradius of $\triangle ABC$ is 3 units and its area is 6 units and $\triangle DEF$ is formed by joining foot of perpendiculars drawn from *A*, *B*, *C* on sides *BC*, *CA*, *AB* respectively. Find the perimeter of $\triangle DEF$.

2						Answ	/en	S			2 	l.	1
1.	2	2.	1	3.	3	4.	1	5.	7	6.	2	7.	2
8.	3	9.	3	10.	7	11.	6	12.	4	13.	4		

Chapter 25 - Inverse Trigonometric Functions

The INVERSE TRIGONOMETRIC FUNTIONS Exercise-1 : Single Choice Problems **1.** If $\sin^{-1} x \in (0, \frac{\pi}{2})$, then the value of $\tan\left(\frac{\cos^{-1}(\sin(\cos^{-1} x)) + \sin^{-1}(\cos(\sin^{-1} x))}{2}\right)$ is : (a) 1 (b) 2 (c) 3 (d) 4 **2.** The solution set of $(\cot^{-1} x)(\tan^{-1} x) + (2 - \frac{\pi}{2})\cot^{-1} x - 3\tan^{-1} x - 3(2 - \frac{\pi}{2}) > 0$, is : (a) 1 (a) $x \in (\tan 2, \tan 3)$ (b) $x \in (\cot 3, \cot 2)$ (c) $x \in (-\infty, \tan 2) \cup (\tan 3, \infty)$ (d) $x \in (-\infty, \cot 3) \cup (\cot 2, \infty)$ **3.** The value of $\sec^2(\tan^{-1} 2) + \csc^2(\cot^{-1} 3)$ is : (a) 14 (b) 15 (c) 16 (d) 17 4. Sum the series : $\tan^{-1}\left(\frac{4}{1+3\cdot 4}\right) + \tan^{-1}\left(\frac{6}{1+8\cdot 9}\right) + \tan^{-1}\left(\frac{8}{1+15\cdot 16}\right) + \dots \infty \text{ is :}$ (b) $\tan^{-1}(2)$ (c) $\frac{\pi}{2}$ (a) $\cot^{-1}(2)$ (d) $\frac{\pi}{4}$ **5.** $\cot^{-1}(\sqrt{\cos \alpha}) - \tan^{-1}(\sqrt{\cos \alpha}) = x$, then $\sin x =$ (b) $\cot^2\left(\frac{\alpha}{2}\right)$ (c) $\tan \alpha$ (d) $\cot\left(\frac{\alpha}{2}\right)$ (a) $\tan^2\left(\frac{\alpha}{2}\right)$

6. The sum of the infinite series $\cot^{-1}\left(\frac{7}{4}\right) + \cot^{-1}\left(\frac{19}{4}\right) + \cot^{-1}\left(\frac{39}{4}\right) + \cot^{-1}\left(\frac{67}{4}\right) + \dots \infty$ is : (a) $\frac{\pi}{4} - \cot^{-1}(3)$ (b) $\frac{\pi}{4} - \tan^{-1}(3)$ (c) $\frac{\pi}{4} + \cot^{-1}(3)$ (d) $\frac{\pi}{4} + \tan^{-1}(3)$ 7. The number of solutions of equation $\cos^{-1}(1-x) + m\cos^{-1}x = \frac{n\pi}{2}$ is : (where $m > 0; n \le 0$)

(a) 0 (b) 1 (c) 2 (d) none of these

8. Number of solution(s) of the equation $2\tan^{-1}(2x-1) = \cos^{-1}(x)$ is :

(a) 1 (b) 2 (c) 3 (d) infinitely many
9.
$$\sin^{-1}\left(\frac{x^2}{4} - \frac{y^2}{9}\right) + \cos^{-1}\left(\frac{x}{2\sqrt{2}} + \frac{y}{3\sqrt{2}} - 2\right)$$
 equals to :
(a) $\frac{\pi}{2}$ (b) π (c) $\frac{\pi}{\sqrt{2}}$ (d) $\frac{3\pi}{2}$

10. The complete solution set of the inequality $(\cos^{-1} x)^2 - (\sin^{-1} x)^2 > 0$ is :

(a)
$$\left[0, \frac{1}{\sqrt{2}}\right]$$
 (b) $\left[-1, \frac{1}{\sqrt{2}}\right]$ (c) $(-1, 1)$ (d) $\left[-1, \frac{1}{2}\right]$

11. Let α , β are the roots of the equation $x^2 + 7x + k(k-3) = 0$, where $k \in (0, 3)$ and k is a constant. Then the value of $\tan^{-1} \alpha + \tan^{-1} \beta + \tan^{-1} \frac{1}{\alpha} + \tan^{-1} \frac{1}{\beta}$ is :

(a)
$$\pi$$
 (b) $\frac{\pi}{2}$ (c) 0 (d) $-\frac{\pi}{2}$

12. Let $f(x) = a + 2b \cos^{-1} x$, b > 0. If domain and range of f(x) are the same set, then (b-a) is equal to :

(a) $1 - \frac{1}{\pi}$	(b) $\frac{2}{\pi}$
(c) $\frac{2}{\pi} + 1$	(d) $1 + \frac{1}{\pi}$

13. If $(\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8}$, then x equals to :

(a)
$$-1$$
 (b) 1 (c) 0 (d) $\sqrt{3}$

14. The total number of ordered pairs (x, y) satisfying $|y| = \cos x$ and $y = \sin^{-1}(\sin x)$, where $x \in [-2\pi, 3\pi]$ is equal to :

- **15.** If $[\sin^{-1}(\cos^{-1}(\sin^{-1}(\tan^{-1}x)))] = 1$, where $[\cdot]$ denotes greatest integer function, then complete set of values of x is :
 - (a) [tan(sin(cos1)), tan(cos(sin1))] (b) [tan(sin(cos1)), tan(sin(cos(sin1)))]
 - (c) [tan(cos(sin1)), tan(sin(cos(sin1)))] (d) [tan(sin(cos1)), 1]
- **16.** The number of ordered pair(s) (x, y) of real numbers satisfying the equation $1 + x^2 + 2x \sin(\cos^{-1} y) = 0$, is :
- (a) 0 (b) 1 (c) 2 (d) 3 **17.** The value of $\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3$ is : (a) $\frac{\pi}{2}$ (b) π (c) $\frac{3\pi}{4}$ (d) $\frac{5\pi}{8}$

18. The complete set of values of x for which $2\tan^{-1} x + \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ is independent of x is : (d) [1,∞) (c) $(-\infty, -1]$ (a) $(-\infty, 0]$ (b) [0,∞) **19.** The number of ordered pair(s) (x, y) which satisfy $y = \tan^{-1} \tan x$ and $16(x^2 + y^2) - 48\pi x + 16\pi y + 31\pi^2 = 0$, is : (d) 3 (c) 2 (a) 0 (b) 1 **20.** Domain (D) and range (R) of $f(x) = \sin^{-1}(\cos^{-1}[x])$ where [] denotes the greatest integer function is (b) $D \equiv [0, 1), R \equiv \{-1, 0, 1\}$ (a) $D = [1, 2), R = \{0\}$ (d) $D \equiv [-1, 1), R \equiv \left\{-\frac{\pi}{2}, 0, \frac{\pi}{2}\right\}$ (c) $D \equiv [-1, 1), R \equiv \left\{0, \frac{\pi}{2}, \pi\right\}$ **21.** If $2\sin^{-1} x + {\cos^{-1} x} > \frac{\pi}{2} + {\sin^{-1} x}$, then $x \in :$ (where {·} denotes fractional part function) (d) None of these (a) $(\cos 1, 1]$ (b) $[\sin 1, 1]$ (c) $(\sin 1, 1]$ (d) None of these **22.** Let $f(x) = x^{11} + x^9 - x^7 + x^3 + 1$ and $f(\sin^{-1}(\sin 8)) = \alpha$, (α is constant). If $f(\tan^{-1}(\tan 8)) = \lambda - \alpha$, then the value of λ is : (d) 1 (b) 3 (c) 4 (a) 2 **23.** The number of real values of x satisfying the equation $3\sin^{-1} x + \pi x - \pi = 0$ is/are : (c) 2 (d) 3 (a) 0 (b) 1 **24.** Range of $f(x) = \sin^{-1} x + x^2 + 4x + 1$ is : (a) $\left[-\frac{\pi}{2}-2,\frac{\pi}{2}+6\right]$ (b) $\left[0,\frac{\pi}{2}+6\right]$ (c) $\left[-\frac{\pi}{2}-2,\infty\right)$ (d) $\left[-3,\infty\right)$ **25.** The solution set of the inequality $(\csc^{-1}x)^2 - 2\csc^{-1}x \ge \frac{\pi}{6}(\csc^{-1}x - 2)$ is $(-\infty, a] \cup [b, \infty)$, then (a + b) equals : (b) 1 (c) 2 (a) 0 (d) -3 **26.** Number of solution of the equation $2\sin^{-1}(x+2) = \cos^{-1}(x+3)$ is : (c) 2 (b) 1 (a) 0 (d) None of these **27.** $\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) + \dots \infty =$ (b) $\frac{\pi}{2}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{6}$ (a) $\frac{\pi}{4}$ **28.** If $\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \frac{1}{2}\cos^{-1}x$ then x is equal to : (b) $\frac{2}{5}$ (c) $\frac{3}{5}$ (a) $\frac{1}{2}$ (d) none of these

29. The set of value of x, satisfying the equation $\tan^2(\sin^{-1} x) > 1$ is :

(b) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (a) (-1, 1) (d) $(-1, 1) - \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right]$ (c) $[-1, 1] - \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ **30.** The sum of the series $\cot^{-1}\left(\frac{9}{2}\right) + \cot^{-1}\left(\frac{33}{4}\right) + \cot^{-1}\left(\frac{129}{8}\right) + \dots \infty$ is equal to : (c) $\cot^{-1}(-1)$ (a) $\cot^{-1}(2)$ (b) $\cot^{-1}(3)$ (d) $\cot^{-1}(1)$ **31.** If $\int \frac{\ln(\cot x)}{\sin x \cos x} dx = -\frac{1}{k} \ln^2(\cot x) + C$ (where C is a constant); then the value of k is : (d) $\frac{1}{2}$ (a) 1 (b) 2 (c) 3 **32.** The number of solutions of $\sin^{-1} x + \sin^{-1} (1 + x) = \cos^{-1} x$ is/are : (a) 0 (b) 1 (c) 2 (d) infinite **33.** The value of *x* satisfying the equation $(\sin^{-1} x)^3 - (\cos^{-1} x)^3 + (\sin^{-1} x)(\sin^{-1} x - \cos^{-1} x) = \frac{\pi^3}{16}$ is: (a) $\cos\frac{\pi}{r}$ (c) $\cos\frac{\pi}{8}$ (b) $\cos\frac{\pi}{4}$ (d) $\cos\frac{\pi}{12}$ 34. The complete solution set of the equation $\sin^{-1}\sqrt{\frac{1+x}{2}} - \sqrt{2-x} = \cot^{-1}(\tan\sqrt{2-x}) - \sin^{-1}\sqrt{\frac{1-x}{2}}$ is : (a) $\left[2-\frac{\pi^2}{4},1\right]$ (b) $\left|1-\frac{\pi^2}{4},1\right|$ (c) $\left|2-\frac{\pi^2}{4},0\right|$ (d) [-1,1] **35.** Let $f(x) = \tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ then which of the following is correct : (b) Range of f(x) is $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) - \{0\}$ (a) f(x) has only one integer in its range (d) Range of f(x) is $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right] - \{0\}$ (c) Range of f(x) is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) - \{0\}$ **36.** If $\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} = \frac{1}{2}\cos^{-1}x$ then x is equal to : (c) $\frac{3}{5}$ (d) None of these (a) $\frac{1}{2}$ (b) $\frac{2}{5}$

37. The set of values of x, satisfying the equation $\tan^2(\sin^{-1} x) > 1$ is :

(b) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (a) (-1,1) (c) $[-1,1] - \left(-\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}}\right)$ (d) $(-1,1) - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$ **38.** The sum of the series $\cot^{-1}\left(\frac{9}{2}\right) + \cot^{-1}\left(\frac{33}{4}\right) + \cot^{-1}\left(\frac{129}{8}\right) + \dots \infty$ is equal to (c) $\cot^{-1}(-1)$ (d) $\cot^{-1}(1)$ (a) $\cot^{-1}(2)$ (b) $\cot^{-1}(3)$ **39.** The number of real values of x satisfying $\tan^{-1}\left(\frac{x}{1-x^2}\right) + \tan^{-1}\left(\frac{1}{x^3}\right) = \frac{3\pi}{4}$ is : (d) infinitely many (a) 0 (b) 1 **40.** Number of integral values of λ such that the equation $\cos^{-1} x + \cot^{-1} x = \lambda$ possesses solution is: (d) 10 (b) 8 (c) 5 (a) 2 **41.** If the equation $x^3 + bx^2 + cx + 1 = 0$ (b < c) has only one real root α . Then the value of $2\tan^{-1}(\csc \alpha) + \tan^{-1}(2\sin \alpha \sec^2 \alpha)$ is : (c) $\frac{\pi}{2}$ (a) $-\frac{\pi}{2}$ (d) π (b) -π **42.** Range of the function $f(x) = \cot^{-1}\{-x\} + \sin^{-1}\{x\} + \cos^{-1}\{x\}$, where $\{\cdot\}$ denotes fractional part function (b) $\left[\frac{3\pi}{4},\pi\right]$ (c) $\left[\frac{3\pi}{4},\pi\right]$ (d) $\left(\frac{3\pi}{4},\pi\right]$ (a) $\left(\frac{3\pi}{4},\pi\right)$ **43.** If $3 \le a < 4$ then the value of $\sin^{-1}(\sin[a]) + \tan^{-1}(\tan[a]) + \sec^{-1}(\sec[a])$, where [x] denotes greatest integer function less than or equal to x, is equal to : (b) 2π – 9 (c) $2\pi - 3$ (d) $9 - 2\pi$ **44.** The number of real solutions of $y + y^2 = \sin x$ and $y + y^3 = \cos^{-1} \cos x$ is/are (a) 3 (c) 3 (d) Infinite (b) 1 (a) 0 **45.** Range of $f(x) = \sin^{-1}[x-1] + 2\cos^{-1}[x-2]$ ([·] denotes greatest integer function) (a) $\left\{-\frac{\pi}{2},0\right\}$ (b) $\left\{\frac{\pi}{2},2\pi\right\}$ (c) $\left\{\frac{\pi}{4},\frac{\pi}{2}\right\}$ (d) $\left\{\frac{3\pi}{2},2\pi\right\}$

2	1						AL	A	nsv	ver	s								3
1.	(a)	2.	(Ъ)	3.	(Ъ)	4.	(a)	5.	(a)	б.	(c)	7.	(a)	8.	(a)	9.	(d)	10.	(Ь)
11.	(c)	12.	(d)	13.	(a)	14.	(c)	15,	(b)	16.	(b)	17.	(Ъ)	18.	(a)	19.	(d)	20.	(a)
21.	(Ъ)	22.	(a)	23.	(Ъ)	24.	(a)	25.	(b)	26.	(b)	27.	(a)	28.	(c)	29.	(d)	30.	(a)
31.	(Ъ)	32.	(Ъ)	33.	(c)	34.	(a)	35.	(b)	36.	(c)	37.	(d)	38.	(a)	39.	(a)	40.	(c)
41.	(b)	42.	(d)	43.	(a)	44.	(d)	45.	(d)		-			13.					

Exercise-2 : One or More than One Answer is/are Correct 1. $f(x) = \sin^{-1}(\sin x), g(x) = \cos^{-1}(\cos x)$, then : (b) $f(x) < g(x) \text{ if } x \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$ (a) f(x) = g(x) if $x \in \left(0, \frac{\pi}{4}\right)$ (d) f(x) > g(x) if $x \in \left(\pi, \frac{5\pi}{4}\right)$ (c) f(x) < g(x) if $\left(\pi, \frac{5\pi}{4}\right)$ **2.** The solution(s) of the equation $\cos^{-1} x = \tan^{-1} x$ satisfy (b) $x^2 = \frac{\sqrt{5}+1}{2}$ (a) $x^2 = \frac{\sqrt{5}-1}{2}$ (c) $\sin(\cos^{-1} x) = \frac{\sqrt{5} - 1}{2}$ (d) $\tan(\cos^{-1} x) = \frac{\sqrt{5} - 1}{2}$ **3.** If the numerical value of $\tan\left(\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right)$ is $\left(\frac{a}{b}\right)$, where *a*, *b* are two positive integers and their H.C.F. is 1 (d) 2a = 3b(c) 3b = a + 1(b) a - b = 11(a) a + b = 23**4.** A solution of the equation $\cot^{-1} 2 = \cot^{-1} x + \cot^{-1} (10 - x)$ where 1 < x < 9 is : (c) 2 (d) 5 (b) 3 (a) 7 5. Consider the equation $\sin^{-1}\left(x^2 - 6x + \frac{17}{2}\right) + \cos^{-1}k = \frac{\pi}{2}$, then : (a) the largest value of k for which equation has 2 distinct solution is 1 (b) the equation must have real root if $k \in \left(-\frac{1}{2}, 1\right)$ (c) the equation must have real root if $k \in \left(-1, \frac{1}{2}\right)$ (d) the equation has unique solution if $k = -\frac{1}{2}$ **6.** The value of x satisfying the equation $(\sin^{-1} x)^3 - (\cos^{-1} x)^3 + (\sin^{-1} x) (\cos^{-1} x) (\sin^{-1} x - \cos^{-1} x) = \frac{\pi^3}{16}$ can not be equal to : (b) $\cos\frac{\pi}{4}$ (c) $\cos\frac{\pi}{8}$ (a) $\cos\frac{\pi}{5}$ (d) $\cos\frac{\pi}{12}$ Answers

(a, b, c)

3.

(a, c)

2.

(a, b, c)

1.

4.

(a, b)

5.

(a, b, d)

(a, b, d)

6.

Exercise-3 :	Comprehension Type Pr	roblems	1.57	0
Let $\cos^{-1}(4x)$	Paragraph fo $(3 - 3x) = a + b \cos^{-1} x$	r Question Nos. 1	to 2	
1. If $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$,	then $\sin^{-1}\left(\sin\frac{a}{b}\right)$ is :	_		
(a) $-\frac{\pi}{3}$ 2. If $x \in \left(\frac{1}{2}, 1\right]$, the function $x \in \left(\frac{1}{2}, 1\right)$	(b) $\frac{\pi}{3}$ then $\lim_{y \to a} b \cos y$ is :	(c) $-\frac{\pi}{6}$	(d) $\frac{\pi}{6}$	
(a) $-\frac{1}{3}$	(b) –3	(c) $\frac{1}{3}$	(d) 3	

2		An	swers		 11
1. (a)	2. (d)				

Exercise-4 : Matching Type Problems

-			
Т			
	L	٠	
_	-	-	

/	Column-I	/	Column-ll
(A)	$\sin^{-1}\frac{4}{5} + 2\tan^{-1}\frac{1}{3} =$	(P)	$\frac{\pi}{6}$
(B)	$\sin^{-1}\frac{12}{13} + \cos^{-1}\frac{4}{5} + \tan^{-1}\frac{63}{16} =$	(Q)	$\frac{\pi}{2}$
(C)	If $A = \tan^{-1} \frac{x\sqrt{3}}{2\lambda - x}$, $B = \tan^{-1} \left(\frac{2x - \lambda}{\lambda\sqrt{3}} \right)$	(R)	$\frac{\pi}{4}$
(D)	then $A - B$ can be equal to $\tan^{-1} \frac{1}{7} + 2\tan^{-1} \frac{1}{3} =$	(S)	π
		(T)	$\frac{\pi}{3}$

2.

	Column-l	1	Column-ll
(P)	If $f(x) = \sin^{-1} x$ and $\lim_{x \to \frac{1^+}{2}} f(3x - 4x^3)$	(P)	3
	$= l - 3 \left(\lim_{x \to \frac{1^+}{2}} f(x) \right) $ then $[l] =$		
	([·] denotes greatest integer function)		
(Q)	If $x > 1$, then the value of $\sin\left(\frac{1}{2}\tan^{-1}\frac{2x}{1-x^2} - \tan^{-1}x\right)$	(Q)	-1
	is		
(R)	Number of values of x satisfying $\sin^{-1} x - \cos^{-1} x = \sin^{-1} (3x - 2)$	(R)	2
(S)	The value of $\sin\left(\tan^{-1}3 + \tan^{-1}\frac{1}{3}\right)$	(S)	1

-			
1	z		
	0		
		3	3.

	Column-i		Column-II
(A)	If the first term of an arithmetic progression is 1, its second term is n , and the sum of the first n terms is $33n$	(P)	3
(B)	If the equation $\cos^{-1} x + \cot^{-1} x = k$ possess solution, then the largest integral value of k is	(Q)	4
(C)	The number of solution of equation $\cos \theta = 1 + \sin \theta $ in interval [0, 3π], is	(R)	5
(D)	If the quadratic equation $x^2 - x - a = 0$ has integral roots where $a \in N$ and $4 \le a \le 40$, then the number of possible values of a is	(S)	9

4.

	Column-i		Column-II
(A)	The value of $\tan^{-1}([\pi]) + \tan^{-1}([-\pi] + 1) =$	(P)	2
	([·] denotes greatest integer function)		
(B)	The number of solutions of the equation $\tan x + \sec x = 2\cos x$ in the interval $[0, 2\pi]$ is	(Q)	3
(C)	The number of roots of the equation $x + 2 \tan x = \frac{\pi}{2}$ in the interval $[0, 2\pi]$ is	(R)	0
(D)	The number of solutions of the equation $x^3 + x^2 + 4x + 2\sin x = 0$ in the interval $[0, 2\pi]$ is	(S)	1

1	a. a.	Answers	l'an an a
1. A → Q	$P; B \to S; C \to P;$; $D \rightarrow R$	
$2. \ \mathbf{A} \rightarrow \mathbf{P}$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$	
3. A → S	; $B \rightarrow R$; $C \rightarrow P$;	$D \rightarrow Q$	
$4. A \rightarrow R$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow S$	

Exercise-5 : Subjective Type Problems

- 1. The complete set of values of x satisfying the inequality $\sin^{-1}(\sin 5) > x^2 4x$ is $(2 \sqrt{\lambda 2\pi}, 2 + \sqrt{\lambda 2\pi})$, then $\lambda =$
- **2.** In a $\triangle ABC$; if $(II_1)^2 + (I_2I_3)^2 = \lambda R^2$, where *I* denotes incentre; I_1, I_2 and I_3 denote centres of the circles escribed to the sides *BC*, *CA* and *AB* respectively and *R* be the radius of the circum circle of $\triangle ABC$. Find λ .
- **3.** If $2\tan^{-1}\frac{1}{5} \sin^{-1}\frac{3}{5} = -\cos^{-1}\frac{63}{\lambda}$, then $\lambda =$
- 4. If $2\tan^{-1}\frac{1}{5} \sin^{-1}\frac{3}{5} = -\cos^{-1}\frac{9\lambda}{65}$, then $\lambda = \frac{1}{2}$
- 5. If $\sum_{n=0}^{\infty} 2 \cot^{-1}\left(\frac{n^2+n+4}{2}\right) = k\pi$, then find the value of k.

6. Find number of solutions of the equation $\sin^{-1}(|\log_6^2(\cos x) - 1|) + \cos^{-1}(|3\log_6^2(\cos x) - 7|) = \frac{\pi}{2}$, if $x \in [0, 4\pi]$.

Chapter 26 – Vector & 3Dimensional Geometry

Vector & 3Dimensional Geometry

26. Vector and 3Dimensional Geometry

1. The minimum value of $x^2 + y^2 + z^2$ if ax + by + cz = p, is : (a) $\left(\frac{p}{a+b+c}\right)^2$ (b) $\frac{p^2}{a^2+b^2+c^2}$ (c) $\frac{a^2+b^2+c^2}{p^2}$ (d) 0 **2.** If the angle between the vectors $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $\frac{\pi}{3}$ and the area of the triangle with adjacent sides equal to \vec{a} and \vec{b} is 3, then $\vec{a} \cdot \vec{b}$ is equal to : (d) $\frac{\sqrt{3}}{2}$ (c) 4√3 (b) 2√3[°] (a) √3 **3.** A straight line cuts the sides *AB*, *AC* and *AD* of a parallelogram *ABCD* at points B_1, C_1 and D_1 respectively. If $\overrightarrow{AB_1} = \lambda_1 \overrightarrow{AB}, \overrightarrow{AD_1} = \lambda_2 \overrightarrow{AD}$ and $\overrightarrow{AC_1} = \frac{\lambda_3}{2} \overrightarrow{AC}$, where λ_1, λ_2 and λ_3 are

positive real numbers, then :

- (b) λ_1, λ_3 and λ_2 are in GP (a) λ_1, λ_3 and λ_2 are in AP
- (c) λ_1, λ_3 and λ_2 are in HP
- (d) $\lambda_1 + \lambda_2 + \lambda_3 = 0$
- 4. Let $\vec{a} = 2\hat{i} + \hat{j} 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} \vec{a}| = 2\sqrt{2}$ and the angle between $\vec{\mathbf{a}} \times \vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ is 30° then $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| \times \vec{\mathbf{c}}|$ is equal to :
 - (b) $\frac{3}{2}$ (a) $\frac{2}{3}$ (c) 2 (d) 3
- 5. If acute angle between the line $\vec{\mathbf{r}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \lambda(4\hat{\mathbf{i}} 3\hat{\mathbf{k}})$ and xy-plane is θ_1 and acute angle between the planes x + 2y = 0 and 2x + y = 0 is θ_2 , then $(\cos^2 \theta_1 + \sin^2 \theta_2)$ equals to :
 - (b) $\frac{1}{4}$ (c) $\frac{2}{3}$ (d) $\frac{3}{4}$ (a) 1

6.	If a, b, c, x, y, z are real $\frac{a+b+c}{x+y+z}$ is equal to :	al and $a^2 + b^2 + c^2 = 25$,	$x^2 + y^2 + z^2 = 3$	6 and $ax + by + cz = 30$, then
	(a) 1	(b) $\frac{6}{5}$	(c) $\frac{5}{6}$	(d) $\frac{3}{4}$
7.	If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are non-zero	ro, non-collinear vectors	such that $ \vec{\mathbf{a}} = 2$,	$\overrightarrow{\mathbf{a}}$, $\overrightarrow{\mathbf{b}}$ = 1 and angle between $\overrightarrow{\mathbf{a}}$
	and $\vec{\mathbf{b}}$ is $\frac{\pi}{3}$. If $\vec{\mathbf{r}}$ is any	y vector such that $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{a}} =$	$=2, \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{b}} = 8, (\overrightarrow{\mathbf{r}} + 3)$	$\vec{\mathbf{a}} = 10 \vec{\mathbf{b}} \cdot (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) = 4\sqrt{3}$ and
	satisfy to $\vec{\mathbf{r}} + 2\vec{\mathbf{a}} - 10\vec{\mathbf{l}}$	$\vec{\mathbf{b}} = \lambda (\vec{\mathbf{a}} \times \vec{\mathbf{b}})$, then λ is equ	ual to :	
	(a) $\frac{1}{2}$	(b) 2	(c) $\frac{1}{4}$	(d) None of these
8.	Let $\vec{\mathbf{a}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 4\hat{\mathbf{k}};$	$\vec{\mathbf{b}} = 2(\hat{\mathbf{i}} + \hat{\mathbf{k}}) \text{ and } \vec{\mathbf{c}} = 4\hat{\mathbf{i}} + \hat{\mathbf{k}}$	$2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$. Sum of t	he values of ' α ' for which the
	equation $\vec{x a} + \vec{y b} + z$	$\vec{\mathbf{c}} = \alpha \left(x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}} \right)$ has r	non-trivial solution	n is :
	(a) –1	(b) 4	(c) 7	(d) 8
9.	If $\vec{\mathbf{a}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\vec{\mathbf{b}} = \hat{\mathbf{i}}$	$-\hat{\mathbf{j}} + \hat{\mathbf{k}}, \overrightarrow{\mathbf{c}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} - \hat{\mathbf{k}}$, the	en the value of \vec{b}	$\begin{array}{ccccc} \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} \\ \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} \\ \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} \\ \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} \\ \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} \\ \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} \\ \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} \\ \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} \\ \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} \\ \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} & \overrightarrow{\bullet} \\ \overrightarrow{\bullet} & \overrightarrow{\bullet} \end{array} $
	(a) 2	(b) 4	(c) 16	(d) 64
10.	If $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are two ve	ctors such that $ \vec{\mathbf{a}} = 1, \vec{\mathbf{b}} $	$ =4, \mathbf{a} \cdot \mathbf{b} = 2.$ If	$\vec{\mathbf{c}} = (2 \vec{\mathbf{a}} \times \vec{\mathbf{b}}) - 3 \vec{\mathbf{b}}$, then angle
	between $\vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ is :			
	(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{3}$	(c) $\frac{2\pi}{3}$	(d) $\frac{5\pi}{6}$
11.	If \vec{a} , \vec{b} , \vec{c} are unit vector	ors, then the value of $ \vec{\mathbf{a}}-$	$2\vec{\mathbf{b}} ^2 + \vec{\mathbf{b}} - 2\vec{\mathbf{c}} ^2 +$	$ \vec{\mathbf{c}} - 2\vec{\mathbf{a}} ^2$ does not exceed to:
	(a) 9	(b) 12	(c) 18	(d) 21
12.	The adjacent side vect	cors \overrightarrow{OA} and \overrightarrow{OB} of a recta	angle OACB are $\stackrel{\rightarrow}{\mathbf{a}}$	and $\overrightarrow{\mathbf{b}}$ respectively, where <i>O</i> is
	the origin. If $16 \vec{\mathbf{a}} \times \vec{\mathbf{b}} $ AB then the value of t	$ = 3(\vec{a} + \vec{b})^2$ and θ be an($\theta/2$) is :	e the acute angle l	between the diagonals OC and
	(a) $\frac{1}{\sqrt{2}}$	(b) $\frac{1}{2}$	(c) $\frac{1}{\sqrt{3}}$	(d) $\frac{1}{3}$
13.	The vector $\overrightarrow{\mathbf{AB}} = 3\hat{\mathbf{i}} + \hat{\mathbf{i}}$	$4\hat{\mathbf{k}}$ and $\overrightarrow{\mathbf{AC}} = 5\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 4\hat{\mathbf{j}}$	${f \hat k}$ are the sides of	a triangle ABC. The length of
	the median through A (a) $\sqrt{288}$.is: (b) √72	(c) √ <u>33</u>	(d) $\sqrt{18}$

14. If $\vec{a} = 2\hat{i} + \lambda\hat{j} + 3\hat{k}$; $\vec{b} = 3\hat{i} + 3\hat{j} + 5\hat{k}$; $\vec{c} = \lambda\hat{i} + 2\hat{j} + 2\hat{k}$ are linearly dependent vectors, then the number of possible values of λ is : (a) 0 (d) More than 2 (b) 1 (c) 2 **15.** The scalar triple product $[\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c} \quad \overrightarrow{b} + \overrightarrow{c} - \overrightarrow{a} \quad \overrightarrow{c} + \overrightarrow{a} - \overrightarrow{b}]$ is equal to : (d) $4[\overrightarrow{\mathbf{a} \mathbf{b} \mathbf{c}}]$ (c) $2[\mathbf{a}\mathbf{b}\mathbf{c}]$ (a) 0 (b) [abc] 16. If $\hat{\mathbf{a}}$ and $\hat{\mathbf{b}}$ are unit vectors then the vector defined as $\vec{\mathbf{V}} = (\hat{\mathbf{a}} \times \hat{\mathbf{b}}) \times (\hat{\mathbf{a}} + \hat{\mathbf{b}})$ is collinear to the vector : (a) $\hat{\mathbf{a}} + \hat{\mathbf{b}}$ (b) $\hat{\mathbf{b}} - \hat{\mathbf{a}}$ (c) $2\hat{\mathbf{a}} - \hat{\mathbf{b}}$ (d) $\hat{a} + 2\hat{b}$ 17. The sine of angle formed by the lateral face ADC and plane of the base ABC of the tetrahedron *ABCD*, where $A \equiv (3, -2, 1)$; $B \equiv (3, 1, 5)$; $C \equiv (4, 0, 3)$ and $D \equiv (1, 0, 0)$, is : (b) $\frac{5}{\sqrt{29}}$ (c) $\frac{3\sqrt{3}}{\sqrt{29}}$ (d) $\frac{-2}{\sqrt{29}}$ (a) $\frac{2}{\sqrt{29}}$ **18.** Let $\mathbf{a}_r = x_r \hat{\mathbf{i}} + y_r \hat{\mathbf{j}} + z_r \hat{\mathbf{k}}$, r = 1, 2, 3 be three mutually perpendicular unit vectors, then the value of $\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix}$ is equal to : (b) ±1 (a) 0 (c) ±2 (d) ± 4 19. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-coplanar vectors and \vec{r} be any arbitrary vector, then the expression $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times (\vec{\mathbf{r}} \times \vec{\mathbf{c}}) + (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) \times (\vec{\mathbf{r}} \times \vec{\mathbf{a}}) + (\vec{\mathbf{c}} \times \vec{\mathbf{a}}) \times (\vec{\mathbf{r}} \times \vec{\mathbf{b}})$ is always equal to : (b) $2[\mathbf{a}\mathbf{b}\mathbf{c}]\mathbf{r}$ (a) $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{r}$ (c) $4[\mathbf{a}\mathbf{b}\mathbf{c}]\mathbf{r}$ (d) **o 20.** E and F are the interior points on the sides BC and CD of a parallelogram ABCD. Let $\overrightarrow{BE} = 4 \overrightarrow{EC}$ and $\overrightarrow{\mathbf{CF}} = 4 \overrightarrow{\mathbf{FD}}$. If the line *EF* meets the diagonal *AC* in *G*, then $\overrightarrow{\mathbf{AG}} = \lambda \overrightarrow{\mathbf{AC}}$, where λ is equal to : (b) $\frac{21}{25}$ (c) $\frac{7}{13}$ (d) $\frac{21}{5}$ (a) $\frac{1}{3}$ **21.** If $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ are unit vectors and $\vec{\mathbf{c}}$ is such that $\vec{\mathbf{c}} = \vec{\mathbf{a}} \times \vec{\mathbf{c}} + \vec{\mathbf{b}}$, then the maximum value of $[\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \cdot \vec{\mathbf{c}}]$ is : (b) $\frac{1}{2}$ (d) $\frac{3}{2}$ (c) 2 (a) 1 **22.** Consider matrices $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 1 & 2 \\ 1 & -1 & 1 \end{bmatrix}; B = \begin{bmatrix} 2 & 1 & 3 \\ 4 & 1 & -1 \\ 2 & 2 & 3 \end{bmatrix}; C = \begin{bmatrix} 14 \\ 12 \\ 2 \end{bmatrix}; D = \begin{bmatrix} 13 \\ 11 \\ 14 \end{bmatrix}; X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ such that solutions of equation AX = C and BX = D represents two points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$

respectively in three dimensional space. If P'Q' is the reflection of the line PQ in the plane $\prod : x + y + z = 9$, then the point which does not lie on P'Q' is : (a) (3, 4, 2) (b) (5, 3, 4) (c) (7, 2, 3) (d) (1, 5, 6)

23	. Th A(e value of α for w $\hat{i} + \hat{j} + \hat{k}$), $B(2\hat{i} + 2\hat{j})$	hich + ƙ)	point M (and C (3 \hat{i}	α î + 2ĵ + 1 – k ̂) is :	k), 1	ies in the plane	containing three points
	(a)	1	(b)	2		(c)	$\frac{1}{2}$	(d) $-\frac{1}{2}$
24	Q is the	s the image of point . e origin is :	P(1, -	2,3) with	respect to	the	plane $x - y + z = 7$	7. The distance of Q from
	(a)	$\sqrt{\frac{70}{3}}$	(b)	$\frac{1}{2}\sqrt{\frac{70}{3}}$		(c)	$\sqrt{\frac{35}{3}}$	(d) $\sqrt{\frac{15}{2}}$
25.	â, Î cot	a nd $\hat{\mathbf{a}} - \hat{\mathbf{b}}$ are unit erminous edges is :	vecto	ors. The vol	lume of th	e pa	rallelopiped, form	ed with $\hat{\mathbf{a}}, \hat{\mathbf{b}}$ and $\hat{\mathbf{a}} \times \hat{\mathbf{b}}$ as
	(a)	1	(b)	$\frac{1}{4}$		(c)	$\frac{2}{3}$	(d) $\frac{3}{4}$
26.	A l PQ	ine passing through is equal to :	P(3,	7, 1) and <i>R</i>	t(2, 5, 7) п	neet	the plane $3x + 2y$	+11z - 9 = 0 at <i>Q</i> . Then
	(a)	$\frac{5\sqrt{41}}{59}$	(b)	$\frac{\sqrt{41}}{59}$		(c)	$\frac{50\sqrt{41}}{59}$	(d) $\frac{25\sqrt{41}}{59}$
27.	If a	$\vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ are three	e non	-zero non-	coplanar	vecto	but bors and $\overrightarrow{\mathbf{p}} = \overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}}$	$-2\vec{\mathbf{c}}; \vec{\mathbf{q}} = 3\vec{\mathbf{a}} - 2\vec{\mathbf{b}} + \vec{\mathbf{c}}$
	and	$\vec{\mathbf{r}} = \vec{\mathbf{a}} - 4\vec{\mathbf{b}} + 2\vec{\mathbf{c}}$	are th	ree vector	s such tha	t the	e volumes of the p	arallelopiped formed by
	, 1 a, 1	b , c and p , q , r as the formula \mathbf{p} and \mathbf{p} and \mathbf{p} as the formula \mathbf{p} and \mathbf{p} as the formula \mathbf{p} and \mathbf{p} and \mathbf{p} and \mathbf{p} and \mathbf{p} as the formula \mathbf{p} and	neir c	oterminou	s edges ar	e V ₁ a	and V ₂ respectivel	y. Then $\frac{V_2}{V_1}$ is equal to :
~~	(a)	10	(b)	15		(c)	20	(d) None of these
28.	lf per	the two lines rep pendicular to each	other	ted by x ; then the	x + ay = b; value of c	; z + 1a' +	cy = d and $x = cc'$ is :	a'y + b'; z = c'y + d' be
	(a)	1	(b)	2 → .		(c)	3	(d) 4
29.	The	distance between	the li	ne $\mathbf{r} = 2\mathbf{\hat{i}}$	$-2\hat{\mathbf{j}}+3\hat{\mathbf{k}}$	+λ(i	$\hat{\mathbf{i}} - \hat{\mathbf{j}} + 4\hat{\mathbf{k}}$) and the	e plane $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + \hat{\mathbf{k}}) = 5$
	is :	10		10			2	
	(a)	10 9	(b)	$\frac{10}{3\sqrt{3}}$		(c)	$\frac{3}{10}$	(d) $\frac{10}{3}$
30.	If (a	$\vec{\mathbf{a}} \times \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$	→ c), v	where \vec{a}, \vec{b}	and $\vec{\mathbf{c}}$ are	e any	three vectors suc	th that $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \neq 0$, $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}} \neq 0$,
	ther	a and c are :						an ha ann an ann ann ann ann ann ann ann
	(a)	Inclined at an ang	le of	$\frac{\pi}{3}$		(b)) Inclined at an a	angle of $\frac{\pi}{\epsilon}$
	(c)	Perpendicular				(d)	Parallel	0

- **31.** Let \mathbf{r} be position vector of variable point in cartesian plane OXY such that $\vec{\mathbf{r}} \cdot (\vec{\mathbf{r}} + 6\hat{\mathbf{j}}) = 7$ cuts the co-ordinate axes at four distinct points, then the area of the quadrilateral formed by joining these points is :
- (a) $4\sqrt{7}$ (b) $6\sqrt{7}$ (c) $7\sqrt{7}$ (d) $8\sqrt{7}$ **32.** If $|\vec{\mathbf{a}}| = 2$, $|\vec{\mathbf{b}}| = 5$ and $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$, then $\vec{\mathbf{a}} \times (\vec{\mathbf{a}} \times (\vec{\mathbf{a}} \times (\vec{\mathbf{a}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{a}} \times \vec{\mathbf{b}})))))$ is equal to :
 - (a) $64\vec{a}$ (b) $64\vec{b}$ (c) $-64\vec{a}$ (d) $-64\vec{b}$

33. If O (origin) is a point inside the triangle PQR such that $\vec{OP} + k_1 \vec{OQ} + k_2 \vec{OR} = 0$, where k_1 , k_2 are constants such that $\frac{\text{Area} (\Delta PQR)}{\text{Area} (\Delta OQR)} = 4$, then the value of $k_1 + k_2$ is : (a) 2 (b) 3 (c) 4 (d) 5

34. Let PQ and QR be diagonals of adjacent faces of a rectangular box, with its centre at O. If $\angle QOR$, $\angle ROP$ and $\angle POQ$ are θ , ϕ and Ψ respectively then the value of $\cos \theta + \cos \phi + \cos \Psi$ is :

- (a) -2 (b) $-\sqrt{3}$ (c) -1 (d) 0 **35.** The value of $\begin{vmatrix} \vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{p} & \vec{b} \cdot \vec{p} & \vec{c} \cdot \vec{p} \\ \vec{a} \cdot \vec{q} & \vec{b} \cdot \vec{q} & \vec{c} \cdot \vec{q} \end{vmatrix}$ is equal to : (a) $(\vec{p} \times \vec{q})[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}]$ (b) $2(\vec{p} \times \vec{q})[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}]$ (c) $4(\vec{p} \times \vec{q})[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}]$ (d) $(\vec{p} \times \vec{q})\sqrt{[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}]}$ **36.** If $\vec{r} = a(\vec{m} \times \vec{n}) + b(\vec{n} \times \vec{1}) + c(\vec{1} \times \vec{m})$ and $[\vec{1} \ \vec{m} \ \vec{n}] = 4$, find $\frac{a+b+c}{\vec{c} \times \vec{c} \times \vec{a}}$: (a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) 1 (d) 2
- **37.** The volume of tetrahedron, for which three co-terminus edges are \vec{a} , \vec{b} and \vec{c} , is k units. Then, the volume of a parallelepiped formed by $\vec{a} \vec{b}$, $\vec{b} + 2\vec{c}$ and $3\vec{a} \vec{c}$ is :
 - (a) 6k (b) 7k (c) 30k (d) 42k
- **38.** The equation of a plane passing through the line of intersection of the planes : x + 2y + z 10 = 0 and 3x + y z = 5 and passing through the origin is :
 - (a) 5x + 3z = 0 (b) 5x 3z = 0
 - (c) 5x + 4y + 3z = 0 (d) 5x 4y + 3z = 0

0

39. Find the locus of a point whose distance from x -axis is twice the distance from the point (1, -1, 2):
(a) y² + 2x - 2y - 4z + 6 = 0
(b) x² + 2x - 2y - 4z + 6 = 0

(a)	$y^2 + 2x - 2y - 4z + 6 = 0$	(b)	$x^2 + 2x - 2y - 4z + 6 =$
(c)	$x^2 - 2x + 2y - 4z + 6 = 0$	(d)	$z^2 - 2x + 2y - 4z + 6 =$

1					1			A	nsv	vers	S		an maile		1011				2
1.	(b)	2.	(b)	3.	(c)	4.	(b)	5.	(a)	6.	(c)	7.	(d)	8.	(c)	9.	(c)	10.	(d)
11.	(d)	12.	(d)	13.	(c)	14.	(c)	15.	(d)	16.	(b)	17.	(Ъ)	18.	(b)	19.	(b)	20.	(b)
21.	(b)	22.	(a)	23.	(b)	24.	(a)	25.	(d)	26.	(d)	27.	(Ъ)	28.	(a)	29.	(b)	30.	(d)
31.	(d)	32.	(d)	33.	(b)	34.	(c)	35.	(d)	36.	(a)	37.	(d)	38.	(b)	39.	(c)		
Exercise-2 : One or More than One Answer is/are Correct

379

1. If equation of three lines are :

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}; \frac{x}{2} = \frac{y}{1} = \frac{z}{3}$$
 and $\frac{x-1}{1} = \frac{2-y}{1} = \frac{z-3}{0}$, then

which of the following statement(s) is/are correct ?

- (a) Triangle formed by the line is equilateral
- (b) Triangle formed by the lines is isosceles
- (c) Equation of the plane containing the lines is x + y = z
- (d) Area of the triangle formed by the lines is $\frac{3\sqrt{3}}{2}$

(b) 2

2. If $\vec{\mathbf{a}} = \hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$; $\vec{\mathbf{b}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = (\alpha + 1)\hat{\mathbf{i}} + (\beta - 1)\hat{\mathbf{j}} + \hat{\mathbf{k}}$ are linearly dependent vectors and $|\vec{\mathbf{c}}| = \sqrt{6}$; then the possible value(s) of $(\alpha + \beta)$ can be :

(c) 3

(d) 4

(a) 1 3. Consider the lines :

$$L_1: \frac{x-2}{1} = \frac{y-1}{7} = \frac{z+2}{-5}$$

 $L_2: x - 4 = y + 3 = -z$

Then which of the following is/are correct?

- (a) Point of intersection of L_1 and L_2 is (1, -6, 3)
- (b) Equation of plane containing L_1 and L_2 is x + 2y + 3z + 2 = 0
- (c) Acute angle between L_1 and L_2 is $\cot^{-1}\left(\frac{13}{15}\right)$

(d) Equation of plane containing L_1 and L_2 is x + 2y + 2z + 3 = 0

4. Let $\hat{\mathbf{a}}, \hat{\mathbf{b}}$ and $\hat{\mathbf{c}}$ be three unit vectors such that $\hat{\mathbf{a}} = \hat{\mathbf{b}} + (\hat{\mathbf{b}} \times \hat{\mathbf{c}})$, then the possible value(s) of $|\hat{\mathbf{a}} + \hat{\mathbf{b}} + \hat{\mathbf{c}}|^2$ can be :

5. The value(s) of μ for which the straight lines $\vec{\mathbf{r}} = 3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} - 4\hat{\mathbf{k}} + \lambda_1(\hat{\mathbf{i}} - \hat{\mathbf{j}} + \mu\hat{\mathbf{k}})$ and $\vec{\mathbf{r}} = 5\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}} + \lambda_2(\hat{\mathbf{i}} + \mu\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ are coplanar is/are :

(a)
$$\frac{5+\sqrt{33}}{4}$$
 (b) $\frac{-5+\sqrt{33}}{4}$ (c) $\frac{5-\sqrt{33}}{4}$ (d) $\frac{-5-\sqrt{33}}{4}$
6. If $\hat{\mathbf{i}} \times [(\vec{\mathbf{a}} - \hat{\mathbf{j}}) \times \hat{\mathbf{i}}] + \hat{\mathbf{j}} \times [(\vec{\mathbf{a}} - \hat{\mathbf{k}}) \times \hat{\mathbf{j}}] + \hat{\mathbf{k}} \times [(\vec{\mathbf{a}} - \hat{\mathbf{i}}) \times \hat{\mathbf{k}}] = 0$ and $\vec{\mathbf{a}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$, then :

(a)
$$x + y = 1$$
 (b) $y + z = \frac{1}{2}$ (c) $x + z = 1$ (d) None of these

- 7. The value of expression $[\vec{a} \times \vec{b} \quad \vec{c} \times \vec{d} \quad \vec{e} \times \vec{f}]$ is equal to :
 - (a) [abd][cef] [abc][def] (b) [abe][fcd] [abf][ecd]
 - (c) $[\vec{c} \, \vec{d} \, \vec{a}][\vec{b} \, \vec{e} \, \vec{f}] [\vec{c} \, \vec{d} \, \vec{b}][\vec{a} \, \vec{e} \, \vec{f}]$ (d) $[\vec{b} \, \vec{c} \, \vec{d}][\vec{a} \, \vec{e} \, \vec{f}] [\vec{b} \, \vec{c} \, \vec{f}][\vec{a} \, \vec{e} \, \vec{d}]$

8. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are the position vectors of the points A, B, C and D respectively in three dimensional space and satisfy the relation $3\vec{a} - 2\vec{b} + \vec{c} - 2\vec{d} = 0$, then :

- (a) A, B, C and D are coplanar
- (b) The line joining the points *B* and *D* divides the line joining the point *A* and *C* in the ratio of 2:1
- (c) The line joining the points A and C divides the line joining the points B and D in the ratio of 1:1
- (d) The four vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are linearly dependent.
- 9. If OABC is a tetrahedron with equal edges and \hat{p} , \hat{q} , \hat{r} are unit vectors along bisectors of
 - $\overrightarrow{OA}, \overrightarrow{OB} : \overrightarrow{OB}, \overrightarrow{OC} : \overrightarrow{OC}, \overrightarrow{OA} \text{ respectively and } \hat{\mathbf{a}} = \frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}, \vec{\mathbf{b}} = \frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}, \vec{\mathbf{c}} = \frac{\overrightarrow{OC}}{|\overrightarrow{OC}|}, \text{ then } :$ (a) $\frac{[\hat{\mathbf{a}} \hat{\mathbf{b}} \hat{\mathbf{c}}]}{[\hat{\mathbf{p}} \hat{\mathbf{q}} \hat{\mathbf{r}}]} = \frac{3\sqrt{3}}{2}$ (b) $\frac{[\hat{\mathbf{a}} + \hat{\mathbf{b}} \hat{\mathbf{b}} + \hat{\mathbf{c}} \hat{\mathbf{c}} + \hat{\mathbf{a}}]}{[\hat{\mathbf{p}} \hat{\mathbf{q}} \hat{\mathbf{r}}]} = \frac{3\sqrt{3}}{4}$ (c) $\frac{[\hat{\mathbf{a}} + \hat{\mathbf{b}} \hat{\mathbf{b}} + \hat{\mathbf{c}} \hat{\mathbf{c}} + \hat{\mathbf{a}}]}{[\hat{\mathbf{p}} \hat{\mathbf{q}} \hat{\mathbf{r}}]} = \frac{3\sqrt{3}}{2}$ (d) $\frac{[\hat{\mathbf{a}} \hat{\mathbf{b}} \hat{\mathbf{c}}]}{[\hat{\mathbf{p}} + \hat{\mathbf{q}} \hat{\mathbf{q}} + \hat{\mathbf{r}} \hat{\mathbf{r}} + \hat{\mathbf{p}}]} = \frac{3\sqrt{3}}{4}$

10. Let $\hat{\mathbf{a}}$ and $\hat{\mathbf{c}}$ are unit vectors and $|\vec{\mathbf{b}}| = 4$. If the angle between $\hat{\mathbf{a}}$ and $\hat{\mathbf{c}}$ is $\cos^{-1}\left(\frac{1}{4}\right)$; and

- $\vec{\mathbf{b}} 2\hat{\mathbf{c}} = \lambda \hat{\mathbf{a}}$, then the value of λ can be :
- (a) 2 (b) -3
- (c) 3 (d) -4
- **11.** Consider the line L_1 : x = y = z and the line L_2 : 2x + y + z 1 = 0 = 3x + y + 2z 2, then :
 - (a) The shortest distance between the two lines is $\frac{1}{\sqrt{2}}$
 - (b) The shortest distance between the two lines is $\sqrt{2}$
 - (c) Plane containing the line L_2 and parallel to line L_1 is z x + 1 = 0
 - (d) Perpendicular distance of origin from plane containing line L_2 and parallel to line L_1 is $\frac{1}{\sqrt{2}}$

- 12. Let $\vec{\mathbf{r}} = \sin x (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) + \cos y (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) + 2(\vec{\mathbf{c}} \times \vec{\mathbf{a}})$, where $\vec{\mathbf{a}}, \vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ are three non-coplanar vectors. It is given that $\vec{\mathbf{r}}$ is perpendicular to $\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}}$. The possible value(s) of $x^2 + y^2$ is/are :
 - (b) $\frac{5\pi^2}{4}$ (a) π^2 (d) $\frac{37\pi^2}{4}$ (c) $\frac{35\pi^2}{4}$
- **13.** If $(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times (\vec{\mathbf{c}} \times \vec{\mathbf{d}}) = h \vec{\mathbf{a}} + k \vec{\mathbf{b}} = r \vec{\mathbf{c}} + s \vec{\mathbf{d}}$, where $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$ are non-collinear and $\vec{\mathbf{c}}$, $\vec{\mathbf{d}}$ are also non-collinear then :
 - (b) $k = \begin{bmatrix} \overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{c}} & \overrightarrow{\mathbf{d}} \end{bmatrix}$ (a) $h = [\mathbf{b} \mathbf{c} \mathbf{d}]$ (d) $s = -[\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{c}}]$ (c) $r = [\overrightarrow{\mathbf{a}} \overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{d}}]$
- **14.** Let a be a real number and $\vec{\alpha} = \hat{i} + 2\hat{j}$, $\vec{\beta} = 2\hat{i} + a\hat{j} + 10\hat{k}$, $\vec{\gamma} = 12\hat{i} + 20\hat{j} + a\hat{k}$ be three vectors, then $\stackrel{\rightarrow}{\alpha},\stackrel{\rightarrow}{\beta}$ and $\stackrel{\rightarrow}{\gamma}$ are linearly independent for :

(a) $a > 0$	(b) $a < 0$
(c) $a = 0$	(d) No value of a

- **15.** The volume of a right triangular prism $ABCA_1B_1C_1$ is equal to 3. If the position vectors of the vertices of the base ABC are A(1, 0, 1); B(2, 0, 0) and C(0, 1, 0), then the position vectors of the vertex A_1 can be :
 - (b) (0, 2, 0) (a) (2, 2, 2)
 - (d) (0, -2, 0) (c) (0, -2, 2)
- 16. If $\vec{\mathbf{a}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$, $\vec{\mathbf{b}} = y\hat{\mathbf{i}} + z\hat{\mathbf{j}} + x\hat{\mathbf{k}}$, and $\vec{\mathbf{c}} = z\hat{\mathbf{i}} + x\hat{\mathbf{j}} + y\hat{\mathbf{k}}$, then $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$ is:
 - (a) Parallel to $(y-z)\hat{\mathbf{i}} + (z-x)\hat{\mathbf{j}} + (x-y)\hat{\mathbf{k}}$
 - (b) Orthogonal to $\hat{i} + \hat{j} + \hat{k}$
 - (c) Orthogonal to $(y+z)\hat{\mathbf{i}} + (z+x)\hat{\mathbf{j}} + (x+y)\hat{\mathbf{k}}$,
 - (d) Orthogonal to $x\hat{i} + y\hat{j} + z\hat{k}$
- 17. If a line has a vector equation, $\vec{\mathbf{r}} = 2\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + \lambda(\hat{\mathbf{i}} 3\hat{\mathbf{j}})$ then which of the following statements holds good ?
 - (a) the line is parallel to $2\hat{i} + 6\hat{j}$
 - (b) the line passes through the point $3\hat{i} + 3\hat{j}$
 - (c) the line passes through the point $\hat{i} + 9\hat{j}$
 - (d) the line is parallel to xy plane

- **18.** Let M, N, P and Q be the mid points of the edges AB, CD, AC and BD respectively of the tetrahedron ABCD. Further, MN is perpendicular to both AB and CD and PQ is perpendicular to both AC and BD. Then which of the following is/are correct :
 - (a) AB = CD (b) BC = DA
 - (c) AC = BD (d) AN = BN
- **19.** The solution vectors $\vec{\mathbf{r}}$ of the equation $\vec{\mathbf{r}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\vec{\mathbf{r}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} + \hat{\mathbf{i}}$ represent two straight lines which are :
- (a) Intersecting (b) Non coplanar (c) Coplanar (d) Non intersecting **20.** Which of the following statement(s) is/are incorrect ?
 - (a) The lines $\frac{x-4}{-3} = \frac{y+6}{-1} = \frac{z+6}{-1}$ and $\frac{x-1}{-1} = \frac{y-2}{-2} = \frac{z-3}{2}$ are orthogonal
 - (b) The planes 3x 2y 4z = 3 and the plane x y z = 3 are orthogonal
 - (c) The function $f(x) = ln(e^{-2} + e^x)$ is monotonic increasing $\forall x \in R$
 - (d) If g is the inverse of the function, $f(x) = \ln (e^{-2} + e^x)$ then $g(x) = \ln (e^x e^{-2})$
- **21.** The lines with vector equations are; $\vec{\mathbf{r}_1} = -3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + \lambda(-4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ and
 - $\vec{\mathbf{r}_2} = -2\hat{\mathbf{i}} + 7\hat{\mathbf{j}} + \mu(-4\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ are such that :
 - (a) they are coplanar
 - (b) they do not intersect
 - (c) they are skew
 - (d) the angle between them is $\tan^{-1}(3/7)$

15	Answers												
1.	(b, c, d)	2.	(a, c)	3.	(a, b, c)	4.	(a, d)	5.	(a, c)	6.	(a, c)		
7.	(a, b, c)	8.	(a, c, d)	9.	(a, d)	10.	(c, d)	11.	(a, d)	12.	(b, d)		
13.	(b, c, d)	14.	(a, b, c)	15.	(a, d)	16.	(a, b, c, d)	17.	(b, c, d)	18.	(a, b, c, d)		
19.	(b, d)	20.	(a, b)	21.	(b, c, d)	223	_			10.15			

Exercise-3 : Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

The vertices of $\triangle ABC$ are A(2, 0, 0), B(0, 1, 0), C(0, 0, 2). Its orthocentre is H and circumcentre is S. P is a point equidistant from A, B, C and the origin O.

1.	The	z-coordinate of H	is :					
	(a)	1	(b)	1/2	(c)	1/6	(d)	1/3
2.	The	y-coordinate of S	is :					
	(a)	5/6	(b)	1/3	(c)	1/6	(d)	1/2
3.	PA is	s equal to :						
	(a)	1	(b)	$\sqrt{2}$	(c)	$\sqrt{\frac{3}{2}}$	(d)	$\frac{3}{2}$

Paragraph for Question Nos. 4 to 6

Consider a plane $\pi: \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{n}} = d$ (where $\overrightarrow{\mathbf{n}}$ is not a unit vector). There are two points $A(\overrightarrow{\mathbf{a}})$ and $\overrightarrow{B(\mathbf{b})}$ lying on the same side of the plane.

4. If foot of perpendicular from A and B to the plane π are P and Q respectively, then length of PQ be:

(a)
$$\frac{|(\vec{\mathbf{b}}-\vec{\mathbf{a}})\cdot\vec{\mathbf{n}}|}{|\vec{\mathbf{n}}|}$$
 (b) $|(\vec{\mathbf{b}}-\vec{\mathbf{a}})\cdot\vec{\mathbf{n}}|$ (c) $\frac{|(\vec{\mathbf{b}}-\vec{\mathbf{a}})\times\vec{\mathbf{n}}|}{|\vec{\mathbf{n}}|}$ (d) $|(\vec{\mathbf{b}}-\vec{\mathbf{a}})\times\vec{\mathbf{n}}|$

- **5.** Reflection of $A(\mathbf{a})$ in the plane π has the position vector :
 - (a) $\vec{\mathbf{a}} + \frac{2}{(\vec{\mathbf{n}})^2} (d \vec{\mathbf{a}} \cdot \vec{\mathbf{n}}) \vec{\mathbf{n}}$ (b) $\vec{\mathbf{a}} - \frac{1}{(\vec{\mathbf{n}})^2} (d - \vec{\mathbf{a}} \cdot \vec{\mathbf{n}}) \vec{\mathbf{n}}$ (c) $\vec{\mathbf{a}} + \frac{2}{(\vec{\mathbf{n}})^2} (d + \vec{\mathbf{a}} \cdot \vec{\mathbf{n}}) \vec{\mathbf{n}}$ (d) $\vec{\mathbf{a}} + \frac{2}{(\vec{\mathbf{n}})^2} \vec{\mathbf{n}}$
- **6.** If a plane π_1 is drawn from the point $A(\mathbf{a})$ and another plane π_2 is drawn from point $B(\mathbf{b})$ parallel to π , then the distance between the planes π_1 and π_2 is :

(a)
$$\frac{|(\vec{a} - \vec{b}) \cdot \vec{n}|}{|\vec{n}|}$$
 (b) $|(\vec{a} - \vec{b}) \cdot \vec{n}|$ (c) $|(\vec{a} - \vec{b}) \times \vec{n}|$ (d) $\frac{|(\vec{a} - \vec{b}) \times \vec{n}|}{|\vec{n}|}$

- (a) $|\vec{\mathbf{b}} \vec{\mathbf{a}}| = |\vec{\mathbf{c}} \vec{\mathbf{a}}|$ (b) $|\vec{\mathbf{b}} - \vec{\mathbf{a}}| = |\vec{\mathbf{b}} - \vec{\mathbf{c}}|$
 - (c) $|\vec{\mathbf{c}} \vec{\mathbf{a}}| = |\vec{\mathbf{c}} \vec{\mathbf{b}}|$ (d) $|\vec{\mathbf{b}} \vec{\mathbf{a}}| = |\vec{\mathbf{c}} \vec{\mathbf{a}}| = |\vec{\mathbf{b}} \vec{\mathbf{c}}|$

Vector & 3Dimensional Geometry 385 **13.** If GE and CD are mutually perpendicular, then orthocenter of $\triangle ABC$ must lie on : (a) median through A (b) median through C (c) angle bisector through A (d) angle bisector through B **14.** If $[\overrightarrow{AB} \ \overrightarrow{AC} \ \overrightarrow{AB} \times \overrightarrow{AC}] = \lambda [\overrightarrow{AE} \ \overrightarrow{AG} \ \overrightarrow{AE} \times \overrightarrow{AG}]$, then the value of λ is : (a) -18 (c) -324 (b) 18 (d) 324 Paragraph for Question Nos. 15 to 16 Consider a tetrahedron D - ABC with position vectors if its angular points as A (1, 1, 1); B(1, 2, 3); C(1, 1, 2) and centre of tetrahedron $\left(\frac{3}{2}, \frac{3}{4}, 2\right)$. 15. Shortest distance between the skew lines AB and CD : (d) $\frac{1}{5}$ (b) $\frac{1}{3}$ (c) $\frac{1}{4}$ (a) 16. If N be the foot of the perpendicular from point D on the plane face ABC then the position vector of N are : (a) (-1, 1, 2)(b) (1, -1, 2)(c) (1, 1, -2)(d) (-1, -1, 2) Paragraph for Question Nos. 17 to 18 In a triangle AOB, R and Q are the points on the side OB and AB respectively such that 3OR = 2RB and 2AQ = 3QB. Let OQ and AR intersect at the point P (where O is origin). **17.** If the point P divides OQ in the ratio of μ : 1, then μ is : (d) $\frac{10}{9}$ (c) $\frac{2}{15}$ (b) $\frac{2}{17}$ (a) $\frac{2}{19}$ **18.** If the ratio of area of quadrilateral *PQBR* and area of $\triangle OPA$ is $\frac{\alpha}{\beta}$ then $(\beta - \alpha)$ is (where α and β are coprime numbers) : (d) 0 (b) 9 (c) 7 (a) 1

						Answers													
1.	(d)	2.	(c)	3.	(d)	4.	(c)	5.	(a)	6.	(a)	7.	(c)	8.	(b)	9.	(d)	10.	(b)
11.	(c)	12.	(a)	13.	(b)	14.	(d)	15.	(b)	16.	(b)	17.	(d)	18.	(d)				

Exercise-4 : Matching Type Problems

/	Column-l	11	Column-II
(A)	Lines $\frac{x-1}{-2} = \frac{y+2}{3} = \frac{z}{-1}$ and	(P)	Intersecting
	$\mathbf{r} = (\hat{\mathbf{x}} - \hat{j} + \hat{k}) + t(\hat{i} + \hat{j} + \hat{k}) \text{ are}$		
(B)	Lines $\frac{x+5}{1} = \frac{y-3}{7} = \frac{z+3}{3}$ and	(Q)	Perpendicular
	x - y + 2z - 4 = 0 = 2x + y - 3z + 5 are		
(C)	Lines $(x = t - 3, y = -2t + 1, z = -3t - 2)$ and $\vec{\mathbf{r}} = (t + 1)\hat{i} + (2t + 3)\hat{j} + (-t - 9)\hat{k}$ are	(R)	Parallel
(D)	Lines $\vec{\mathbf{r}} = (\hat{i} + 3\hat{j} - \hat{k}) + t (2\hat{i} - \hat{j} - \hat{k})$ and	(S)	Skew
	$\vec{\mathbf{r}} = (-\hat{i} - 2\hat{j} + 5\hat{k}) + s\left(\hat{i} - 2\hat{j} + \frac{3}{4}\hat{k}\right) \text{are}$		
		(T)	Coincident

2.

	Column-I		Column-ll
(A)	If $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$ and $\vec{\mathbf{c}}$ are three mutually perpendicular vectors where $ \vec{\mathbf{a}} = \vec{\mathbf{b}} = 2$, $ \vec{\mathbf{c}} = 1$, then	(P)	-12
(B)	$[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]$ is If \vec{a} and \vec{b} are two unit vectors inclined at $\frac{\pi}{3}$, then $16[\vec{a} \vec{b} + (\vec{a} \times \vec{b}) \vec{b}]$ is	(Q)	0
(C)	If \vec{b} and \vec{c} are orthogonal unit vectors and $\vec{b} \times \vec{c} = \vec{a}$ then $[\vec{a} + \vec{b} + \vec{c} \ \vec{a} + \vec{b} \ \vec{b} + \vec{c}]$ is	(R)	16
(D)	If $\begin{bmatrix} \vec{x} & \vec{y} & \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{x} & \vec{y} & \vec{b} \end{bmatrix} = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = 0$, each vector being a non-zero vector, then $\begin{bmatrix} \vec{x} & \vec{y} & \vec{c} \end{bmatrix}$ is	(S)	1
		(T)	4

	Column-l		Column-II
(A)	The number of real roots of equation $2^x + 3^x + 4^x - 9^x = 0$ is λ , then $\lambda^2 + 7$ is divisible by	(P)	2
(B)	Let ABC be a triangle whose centroid is G, orthocenter is H and circumcentre is the origin 'O'. If D is any point in the plane of the triangle such that not three of O, A, B, C and D are collinear satisfying the relation $\overrightarrow{AD} + \overrightarrow{BD} + \overrightarrow{CH} + \overrightarrow{3HG} = \overrightarrow{\lambdaHD}$, then $\lambda + 4$ is divisible by	(Q)	3
(C)	If A (adj A) = $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$, then $5 A - 2$ is divisible by	(R)	4
(D)	\vec{a} , \vec{b} , \vec{c} are three unit vector such that $\vec{a} + \vec{b} = \sqrt{2}\vec{c}$, then $ \vec{6a} - 8\vec{b} $ is divisible by	(S)	6
		(T)	10

Exercise-5 : Subjective Type Problems

1. A straight line L intersects perpendicularly both the lines :

$$\frac{x+2}{2} = \frac{y+6}{3} = \frac{z-34}{-10}$$
 and $\frac{x+6}{4} = \frac{y-7}{-3} = \frac{z-7}{-2}$,

then the square of perpendicular distance of origin from L is

- **2.** If $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ and $\hat{\mathbf{c}}$ are non-coplanar unit vectors such that $[\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}] = [\hat{\mathbf{b}} \times \hat{\mathbf{c}} \quad \hat{\mathbf{c}} \times \hat{\mathbf{a}} \quad \hat{\mathbf{a}} \times \hat{\mathbf{b}}]$, then find the projection of $\hat{\mathbf{b}} + \hat{\mathbf{c}}$ on $\hat{\mathbf{a}} \times \hat{\mathbf{b}}$.
- **3.** Let *OA*, *OB*, *OC* be coterminous edges of a cuboid. If *l*, *m*, *n* be the shortest distances between the sides *OA*, *OB*, *OC* and their respective skew body diagonals to them, respectively, then find

$$\frac{\left(\frac{1}{l^2} + \frac{1}{m^2} + \frac{1}{n^2}\right)}{\left(\frac{1}{OA^2} + \frac{1}{OB^2} + \frac{1}{OC^2}\right)}$$

- 4. Let *OABC* be a tetrahedron whose edges are of unit length. If $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ and d $\overrightarrow{OC} = \alpha (\overrightarrow{a} + \overrightarrow{b}) + \beta (\overrightarrow{a} \times \overrightarrow{b})$, then $(\alpha\beta)^2 = \frac{p}{q}$ where p and q are relatively prime to each other. Find the value of $\left[\frac{q}{2p}\right]$ where [·] denotes greatest integer function.
- **5.** Let $\vec{\mathbf{v}}_0$ be a fixed vector and $\vec{\mathbf{v}}_0 = \begin{bmatrix} 1\\ 0 \end{bmatrix}$. Then for $n \ge 0$ a sequence is defined $\vec{\mathbf{v}}_{n+1} = \vec{\mathbf{v}}_n + \left(\frac{1}{2}\right)^{n+1} \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}^{n+1} \vec{\mathbf{v}}_0$ then $\lim_{n \to \infty} \vec{\mathbf{v}}_n = \begin{bmatrix} \alpha\\ \beta \end{bmatrix}$. Find $\frac{\alpha}{\beta}$.

6. If A is the matrix $\begin{bmatrix} 1 & -3 \\ -1 & 1 \end{bmatrix}$, then $A - \frac{1}{3}A^2 + \frac{1}{9}A^3 \dots + \left(-\frac{1}{3}\right)^n A^{n+1} + \dots = \frac{3}{13}\begin{bmatrix} 1 & a \\ b & 1 \end{bmatrix}$. Find $\begin{vmatrix} a \\ b \end{vmatrix}$.

7. A sequence of 2×2 matrices {M_n} is defined as follows $M_n = \begin{vmatrix} \frac{1}{(2n+1)!} & \frac{1}{(2n+2)!} \\ \sum_{k=0}^n \frac{(2n+2)!}{(2k+2)!} & \sum_{k=0}^n \frac{(2n+1)!}{(2k+1)!} \end{vmatrix}$

then $\lim_{n\to\infty} \det(M_n) = \lambda - e^{-1}$. Find λ .

8. Let $|\vec{\mathbf{a}}| = 1$, $|\vec{\mathbf{b}}| = 1$ and $|\vec{\mathbf{a}} + \vec{\mathbf{b}}| = \sqrt{3}$. If $\vec{\mathbf{c}}$ be a vector such that $\vec{\mathbf{c}} = \vec{\mathbf{a}} + 2\vec{\mathbf{b}} - 3(\vec{\mathbf{a}} \times \vec{\mathbf{b}})$ and $p = |(\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}}|$, then find $[p^2]$. (where [] represents greatest integer function).

388

- 9. Let $\vec{\mathbf{r}} = (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \sin x + (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) \cos y + 2(\vec{\mathbf{c}} \times \vec{\mathbf{a}})$, where $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ are non-zero and non-coplanar vectors. If $\vec{\mathbf{r}}$ is orthogonal to $\vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}}$, then find the minimum value of $\frac{4}{-2}(x^2 + y^2)$.
- **10.** The plane denoted by $\prod_1 : 4x + 7y + 4z + 81 = 0$ is rotated through a right angle about its line of intersection with the plane $\prod_2 : 5x + 3y + 10z = 25$. If the plane in its new position be denoted by \prod , and the distance of this plane from the origin is $\sqrt{53 k}$ where $k \in N$, then find k.
- **11.** ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. ABC lies in the xy-plane $|\vec{AB}| = 2$ Under these conditions, the number of possible tetrahedrons is :
- **12.** A, B, C, D are four points in the space and satisfy $|\vec{AB}| = 3$, $|\vec{BC}| = 7$, $|\vec{CD}| = 11$ and $|\vec{DA}| = 9$. Then find the value of $\vec{AC} \cdot \vec{BD}$.
- **13.** Let *OABC* be a regular tetrahedron of edge length unity. Its volume be *V* and $6V = \sqrt{p/q}$ where *p* and *q* are relatively prime. The find the value of (p + q):
- 14. If \vec{a} and \vec{b} are non zero, non collinear vectors and $\vec{a_1} = \lambda \vec{a} + 3 \vec{b}$; $\vec{b_1} = 2 \vec{a} + \lambda \vec{b}$; $\vec{c_1} = \vec{a} + \vec{b}$. Find the sum of all possible real values of λ so that points A_1 , B_1 , C_1 whose position vectors are $\vec{a_1}$, $\vec{b_1}$, $\vec{c_1}$ respectively are collinear is equal to .
- **15.** Let P and Q are two points on curve $y = \log_{\frac{1}{2}} \left(x \frac{1}{2} \right) + \log_{2} \sqrt{4x^{2} 4x + 1}$ and P is also on

 $x^2 + y^2 = 10$. Q lies inside the given circle such that its abscissa is integer. Find the smallest possible value of $\overrightarrow{OP} \cdot \overrightarrow{OQ}$ where 'O' being origin.

- **16.** In above problem find the largest possible value of | **PQ** |.
- **17.** If a, b, c, l, m, $n \in R \{0\}$ such that al + bm + cn = 0, bl + cm + an = 0, cl + am + bn = 0. If a, b, c are distinct and $f(x) = ax^3 + bx^2 + cx + 2$. Find f(1):
- **18.** Let $\vec{\mu}$ and $\vec{\nu}$ are unit vectors and $\vec{\omega}$ is vector such that $\vec{\mu} \times \vec{\nu} + \vec{\mu} = \vec{\omega}$ and $\vec{\omega} \times \vec{\mu} = \vec{\nu}$. The find the value of $[\vec{\mu} \quad \vec{\nu} \quad \vec{\omega}]$.

2	1					Ansv	vers	s I .,	- 184				4
1.	5	2.	1	3.	2	4.	5	5.	2	6.	3	7.	1
8.	5	9,	5	10.	4	11.	8	12.	0	13.	0	14.	2
15.	4	16.	2	17.	2	18.	1						